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Why Talking about Data Mining in 
Drug Discovery
 Drug discovery is highly data driven

 Chemical structure
 Protein sequence, structure, and expression
 Genome and gene
 Biological network 
 Pharmacokenetics and pharmacodynamics 

 Data are increasingly becoming public available 
 Having ample data, demanding more knowledge!
 We see many different data types

 Vector, semi-structured, time-series, spatial-temporal, images,  video, hypertext, 
literature

 Data analysis and data management challenges are from all aspects
 Large volume, high dimensional, high noise, large amount of missing values, non iid

data, structured input and output, unlabeled data
 Multi-instance (label, class, task)

 Spans the full data analysis cycles
 Data collection, data cleasing, data semantics, data integration, data representation
 Model inference, model selection, modal average, model interpretation 
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Outline

 Drug Discovery Pipeline 
 Overview of PubChem
 Chemical Structure Based Prediction 

Problems with Kernel Methods
 Advanced Topics of Data Analysis in Drug 

Discovery
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Part I: Drug Discovery Pipeline
 Overview of Drug Discovery and Development
 Pre-discovery of Drugs
 Target identification/validation, assay development, hit 

identification, lead identification, early safety tests, lead 
optimization, preclinical testing

 Drug Discovery
 Investigational new drug (IND), clinical trials phase I, II, and 

III, new drug application (NDA), manufacturing, post-
market analysis

 Concluding Remarks
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Selected Landmarks in Drug Discovery

Figure adopted from: L.J. Gershell et al. A brief history of novel drug discovery technologies, Nat. Rev. Drug 
Discov. 2, 321-327 (2003)
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Overview: Drug Discovery and Development

• Highly Interdisciplinary: Recent 
advances in genomics, proteomics and 
computational power present new ways 
to understand human diseases at the 
molecular level. 

• High Attrition Rate: For every 5,000-
10,000 compounds that enter the 
research and development (R&D) 
pipeline, ultimately only one receives 
approval.

• Complex: Success requires immense 
resources — the best scientific minds, 
highly sophisticated technology, complex 
project management, and sometimes, 
luck. 

Information 
technology
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Timescale: Drug Discovery and Development

Figure adopted from the brochure of INNOVATION.ORG “Drug Discovery and Development: Understanding the 
R&D Process”. 
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Process: Drug Discovery and Development

• This whole process takes an average of 10-15 years.

Figure adopted from: M.A. Cooper, Optical biosensors in drug discovery, Nat. Rev. Drug Discov. 1, 515-528(2002)
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Drug Discovery: Assay Development
• High-throughput Screening is a widely used approach to identify leads. 

• Advances in robotics and computational power allow researchers to test 
hundreds of thousands of compounds against the target to identify any that 
might be promising. 

Cited from the Internet: http://www.osip.com/scires_coretech
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Drug Discovery: Lead Identification

• Newly invented pharmacologically active moieties may have poor drug-
likeness and may require chemical modification to become drug-like 
enough to be tested biologically or clinically.

• A lead compound is a starting point for chemical modifications in order 
to improve potency, selectivity, or pharmacokinetic parameters.

Figure adopted from: K.H. Bleicher et al. Hit and Lead Generation: Beyond High-throughput Screening, Nat. Rev. 
Drug Discov. 2, 369-378 (2003)
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Drug Discovery: Early Safety 
Test
 Lead compounds go through a series of tests (ADME/Tox) to 

provide an early assessment of the safety of the lead compound. 
 Successful drugs must be:

 Absorbed into the bloodstream;
 Distributed to the proper site of action in the body; 
 Metabolized efficiently and effectively;
 Excreted from the body successfully;
 demonstrated to be not Toxic.

 These studies help researchers prioritize lead compounds early 
in the discovery process. ADME/Tox studies are performed in 
living cells, in animals and via computational models.
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Drug Discovery: Lead 
Optimization
 Lead compounds that survive the initial screening 

are then “optimized,” or altered to make them more 
effective and safer. 

 By changing the structure of a compound, its 
properties can be changed, e.g. making it less likely 
to interact with other chemical pathways and thus 
reducing the potential for side effects.

 Even at this early stage, researchers begin to think 
about how the drug will be made, considering 
formulation and large-scale manufacturing.

 The resulting compound is the candidate drug.
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Case Study of Lead Optimization

Combinatorial variation of the two substituents on the central urea generated a 
potent lead (red). Lead optimization focused on improving potency and in vivo 
activity (blue). 

The hydroxamate zinc-binding functionality typical of many HDAC inhibitors (red).
Lead optimization to the clinical candidate NVPLAQ824 concentrated on 
improvements to in vivo activity and tolerability (blue).

I. Collins & P. Workman, New approaches to molecular cancer therapeutics, Nat. Chem. Biol. 2, 689-700 (2006)
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Drug Discovery: Preclinical 
Testing
 With one or more optimized compounds, lab and 

animal testing is used to determine if the drug is 
safe enough in humans:
 The FDA requires extremely thorough testing before the 

candidate drug can be studied in humans;
 in vitro and in vivo tests (in living cell cultures and animal 

models) are carried out to understand how the drug works 
and what its safety profile looks like. 

 First scale up: how to make large enough quantities of the 
drug for clinical trials.

 From 5,000 to 10,000 compounds, one to five molecules, 
called “candidate drugs,” will be studied in clinical trials.
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Pre-approval R&D Cost

Data source: DiMasi et al., J Health Economics 2003;22(2):151-185 
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Clinical Cost by Therapeutic Category

Data source: DiMasi et al., J Health Economics 2003;22(2):151-185  
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Drug Development: Phase I Clinical Trial

• Initial testing in a small group of healthy volunteers for safety

• These studies are usually conducted with about 20 to 100 healthy volunteers.

• The main goal of a Phase 1 trial is to discover if the drug is safe in humans. 

• Researchers look at the pharmacokinetics of a drug: How is it absorbed? How 
is it metabolized and eliminated from the body? Does it cause side effects? 
Does it produce desired effects? 

• These closely monitored trials are designed to help researchers determine 
what the safe dosing range is and if it should move on to further development.

Figure adopted from the brochure of INNOVATION.ORG “Drug Discovery and Development: Understanding the 
R&D Process”. 
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Drug Development: Phase II Clinical Trial

• Phase 2a and 2b Trials: Sometimes combined with a Phase I trial

• Phase 2a trial is aimed not only at understanding the safety of a 
potential drug, but also getting an early read on efficacy and dosage 
in a small group of patients. 

• The resulting Phase 2b trial would be designed to build on these 
results in a larger group of patients for the sake of designing a 
rigorous and focused Phase III trial.

Figure adopted from the brochure of INNOVATION.ORG “Drug Discovery and Development: Understanding the 
R&D Process”. 
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Drug Development: Phase III Clinical Trial

• Test in a large group of patients to show safety and efficacy

• Study the drug candidate in a larger number of patients: about 1,000-5,000;

• Generate statistically significant data about safety, efficacy and the overall 
benefit-risk relationship of the drug;

• Key in determining whether the drug is safe and effective;

• Provides the basis for labeling instructions to help ensure proper use of the 
drug (e.g., information on potential interactions with other medicines).
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Drug Development: New Drug Application (NDA)

• If the results of all three phases of clinical trials show that the drug is 
both safe and effective, a NDA with the FDA requesting approval to 
market the drug.

• It can be as long as 100,000 pages or more;

• The NDA includes all of the information from the previous years of work, as 
well as the proposals for manufacturing and labeling of the new medicine;

• The FDA can either approve or deny the NDA. It may issue an “approvable”
letter requesting more information or studies before approval can be given;

• Review of an NDA may include an evaluation by an advisory committee. 
Committees vote on whether the FDA should approve an application, and 
under what conditions.
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What if Phase III Fails?

Figure adopted from the brochure of INNOVATION.ORG “Drug Discovery and Development: Understanding the 
R&D Process”. 
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Post-approval R&D Cost

Data source: DiMasi et al., J Health Economics 2003;22(2):151-185 
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Post-approval Clinical Trial: Phase IV

• Research on a new medicine continues even after approval. 

• As a much larger number of patients begin to use the drug, companies 
must continue to monitor it carefully and submit periodic reports, 
including cases of adverse events, to the FDA. 

• In addition, phase V clinical trials can be set up to evaluate long-term 
safety or how the new medicine affects a specific subgroup of patients.
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Post-approval Clinical Trial: Phase IV
• Some drugs have been withdrawn from the market because of risks to 

the patients, and unexpected adverse effects were not detected during 
Phase III clinical trials and were only apparent from the wider patient 
community.

Drug Time Withdrawn Risk/Reason of Being Withdrawn

Thioridazine 2005, U.K. cardiotoxicity

Pemoline 2005, U.S. hepatotoxicity

Natalizumab 2005, U.S. Progressive multifocal leukoencephalopathy (PML). Returned to market on July, 2006

Ximelagatran 2006 hepatotoxicity (liver damage).

Pergolide 2007, U.S. heart valve damage. Still available elsewhere.

Tegaserod 2007 imbalance of cardiovascular ischemic events, including heart attack and stroke. 

Aprotinin 2007 increased risk of complications or death; permanently withdrawn except for research use

Inhaled insulin 2007, U.K. national restrictions on prescribing, doubts over long term safety and too high a cost

Lumiracoxib 2007-2008 serious side effects, mainly liver damage

Rimonabant 2008 severe depression and suicide

Efalizumab 2009 increased risk of progressive multifocal leukoencephalopathy

Sibutramine 2010, Europe increased cardiovascular risk. This drug continues to be available in the U.S.

Gemtuzumab 
ozogamicin

2010, U.S. increased risks of veno-occlusive disease and no benefit in acute myeloid leukemia (AML)

Rosiglitazone 2010, Europe increased risk of heart attacks and death. This drug continues to be available in the U.S.

Partly cited from Wiki: http://en.wikipedia.org/wiki/List_of_withdrawn_drugs
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A Recent Case

 Pfizer Prepares for Voluntary Withdrawal of 
U.S. New Drug Application and for 
Discontinuation of Commercial Availability of 
Mylotarg. 

 “After extensive discussions with the FDA, 
Pfizer has decided to withdraw the NDA 
effective October 15, 2010.”
 Press release from Pfizer
 http://www.pfizer.com/home/
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Duration Stage
Various Pre-discovery

Goal: Understand the disease and choose a target molecules.
How: Scientists in pharmaceutical research companies, government, academic 

and for-profit research institutions contribute to basic research.

3~6 years Discovery
Goal: Find a drug candidate.
How:  Create a new molecule or select an existing molecules as the starting point. Perform 

tests on that molecule and then optimize (change its structure) it to make it work better

Preclinical
Goal: Test extensively to determine if the drug is safe enough for human testing.
How:  Researchers test the safety and effectiveness in the lab and in animal models.

• Each success is built on many, many prior failures.

• Advances in understanding human biology and diseases are opening up 
exciting new possibilities for breakthrough medicines. 

• Researchers face great challenges in understanding and applying these 
advances to the treatment of diseases. 

Concluding Remarks

Table adopted from the online brochure from INNOVATION.ORG: “Drug Discovery and Development” 2007
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6~7 years IND
Goal: Obtain FDA approval to test the drug in humans.
How:  FDA reviews all preclinical testing and plans for clinical testing to determine if the drug 

is safe enough to move to human trials.

Clinical Trials
Goal: Test in humans to determine if the drug is safe and effective.
How:  Candidate drug is tested in clinical setting in three phases of trials, beginning with tests 

in a small group of healthy volunteers and moving into larger groups of patients.

0.5 ~ 2 
years

Review
Goal: FDA reviews all results to determine if the drug can be approved for patients to use.
How:  The FDA reviews hundreds of thousands of pages of information, including all clinical 

and preclinical findings, proposed labeling and manufacturing plans. They may solicit 
the opinion of an independent advisory committee.

Manufacturing
Goal: Formulation, scale up and production of the new medicine

Ongoing Studies
Goal: Monitor the drug as it is used in the larger population to catch any unexpected serious 

side effects.

Total
How much: $800 million - $1 billion
How long:   10 – 15 years

Table adopted from the online brochure from INNOVATION.ORG: “Drug Discovery and Development” 2007

Concluding Remarks
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Bottleneck in Drug Discovery
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Part II: Drug Discovery Related 
Programs in the Public Sectors
 NIH Roadmap Molecular Libraries and Imaging 

project aims to profile millions of chemicals and 
their interactions with biological systems each 
year. 

 EPA routinely performs testing of chemicals and 
evaluate their toxicities.

 Large pharmaceutical companies screening and 
profiling millions of chemicals each year

 FDA is investigating new technology for 
evaluating the interactions between chemicals 
and biological systems

 Results are freely available in the PubChem
database.
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Molecular Probe Discovery 

 NIH Roadmap Molecular Libraries and 
Chemical Probes Program
 A research program designed to develop small 

organic molecules that can be used as chemical 
probes to study the functions of genes, cells & 
biochemical pathways,

 Goal: providing new ways to explore the functions 
of major components of cells in the functions of 
major components of cells in health & disease
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MLPCN 
 US National Institute of Health (NIH) Molecular Libraries Probe 

Production Centers Network MLPCN Program with 9 centers
 Comprehensive Centers: Provide all three services: assay, 

cheminformatics/informatics, and medicinal chemistry within a 
single site. Broad, Burnham, NCGC, and Scripps are 
comprehensive centers. 

 Specialized Screening Centers: Handle specialized types of 
assays including handling assay informatics. Johns Hopkins, 
Southern Research Institute, and UNM are specialized screening 
centers. 

 Specialized Chemistry Centers: Focus on providing medicinal 
chemistry and cheminformatics support for performing structure-
activity relationships that is typically needed to produce useful 
chemical probes from screening hits. These are located at 
Kansas and Vanderbilt. 

 $500M/6 years 
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Chemical Probe
 A potent, selective, and cell-permeable small 

molecule that modulates a specific 
biochemical or cellular functions and provides 
a useful tool for biomedical and biological 
research. 

 Comparing to gene knock-out/in techniques 
and RNAi techniques, small molecule probes 
can target a specific site of a cell’s chemical 
machinery, thus provides information on a 
specific step in a network of cell functions. 
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Probe & Drug?
 Ideal Probe? (S. Frye, NCB, pp. 159-162, 

March 2010)
 Target selectivity: paralogs, orthologs, genes in 

the same pathway, genes important for 
pharmacodyhnamics 

 Connection between the cellular phenotype and 
the molecular mechanism: pharmacology, 

 Toxicity and stability 
 Availability and synthesis feasibility 
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Probe & Drug?

 Not as top priorities:
 Oral bioavailability
 Tendency to be metabolized 
 Half-time
 Cost of manufacture 
 …
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PubChem Web Portal

• All screening and compound data from the MLI phases are freely 
available to the public via a web portal called PubChem

• Annotated information about the bioactivities of small molecules

• Chemical structures and compound probe information

• A fast chemical structure similarity search tool. 
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Exploratory Analysis
 Exploring the utility of MLPCN data (screening 

results, target proteins, and small molecules)  in the 
future therapeutic exploration

 Comparison and analysis of MLPCN targets and 
drug targets
 Novelty of MLPCN targets
 MLPCN targets are a promising source for new drug 

targets
 MLPCN screening compounds vs. approved drugs, 

metabolites, and natural products
 Increase its drug-likeness and biogenic bias
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Fact Sheets (as of Jan 2009)
Total Number of Bioassays 1,306
Number of Target-based 
Bioassays

672

Number of Cell-based Bioassays 634

Number of Bioassays with Active 
Compounds

1,126

Number of Active Compounds in 
all assays

151,930

Number of Bioassay-Compound 
Pairs

555,859

Number of Bioassay Pairs with at 
least one shared compounds

124,442
Zhang, Lushington, and Huan, Characterizing 
the Diversity and Biological Relevance of the 
MLPCN Assay Manifold and Screening Set, 

Journal of Chemical Information and Modeling, 
Vol. 51, No. 6, pp. 1205-1215, 2011 
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Some Terminologies
 MLPCN targets: 200 distinct protein extracted from 680 target-

based bioassay from MLPCN screening 

 MLPCN screening set: a compound set collected from 23 
bioassays deposited between May 1 – July 22, 2009
 A compound is selected if it was tested in 21 of the 23 assays 

(i.e. 90%)
 279,768 compounds obtained

 Random ChemNavigator set: 279,768  compounds randomly 
extracted from the ChemNavigator compound collections
 ChemNavigator: a library of commercially available small 

molecules
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PubChem BioAssays

Purposes of Cell-based Assays Organisms of MLPCN targets
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MLPCN Targets

Subcellular locations Cellular functions of 113 targets

• 289 target proteins are extracted from 680 target-based bioassays 

• 200 distinct proteins are obtained from converting 215 gene symbols

• 113 MLPCN targets are identified as enzymes
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Statistics of PubChem BioAssays

# of Compounds Active
in X BioAssays

Promiscuity of Chemicals 

Selectivity of BioAssays 

# of BioAssays 
with X Active
Compounds



MLPCN Targets and Drug Targets

• Needleman-Wunsch global alignment (gap open =11, extension = 1) 
between MLPCN targets and drug targets

• 500 human proteins randomly selected from GenBank as control set 
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MLPCN Targets and Drug Targets

• A MLPCN target is defined as “similar” to drug targets if its sequence 
identity to at least one drug target is >= 30% 

• MLPCN target weighted counts vs. total number of targets in PubChem



UniHI: Human Protein-Protein Interaction Network

• UniHI is a unified human PPI network containing over 250,000 human 
PPIs collected from 14 major PPI sources with careful data integration 
and literature curation.

• One of the largest human PPI networks, with various confidence 
scoring systems for each PPI



Subcellular location of MLPCN and Drug Targets

• Subcellular location of 182 MLPCN targets, and 1035 drug targets from 
NCBI Entrez Gene and Gene Ontology databases

• 347 random human proteins from UniHI as control set



Distribution of Shortest Path Lengths

• Shortest Path Length: the smallest number of PPIs between any MLPCN 
target to any drug target in the UniHI network (graph)

• Control set: shortest path length between any two proteins in UniHI



Degree Distribution in UniHI

• Network degree: the number of interacting proteins of a given protein in 
the UniHI network (graph)

• Control: 347 random human proteins in UniHI



Degree Distribution and Subcellular Localization

Membrane

Nucleus

Multiple-location
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Degree Distribution and Subcellular Localization

Cytoplasm

Extracellular

Organelle
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A Few Remarks

 Shortest path length analysis shows that the MLPCN targets 
are clustering around drug targets, and revealed that the 
MLPCN tends to sample pathways that have already been 
therapeutically targeted. 

 This significant difference in median degrees of MLPCN and 
known drug targets implied that MLPCN targets are somewhat 
distinct relative to current drug targets, and thus may 
theoretically afford novel avenues for eventual therapeutics 
development. 



Drug Likeness of MLPCN Compounds



Compound Diversity Analysis

• When designing an optimal screening library for MLPCN bioassays, a 
crucial step is to assess its chemical space coverage, structural novelty, 
pharmaceutical and biological relevance compared to other important 
compound collections

• Characterizing the chemical space defined by a compound set

• Extract features (descriptors) from each compound 

• Map each compound into an N-dimensional space consisting of N
molecular structural features and properties

• This descriptor set enabled us to compare how two compound sets 
distribute in the same chemical descriptor space. 



Compound Diversity Analysis (2)

• Software: Tripos DiverseSolutions program 

• Calculate the BCUT descriptors for all sets of compounds, 

• Auto-select three descriptors to best define a 3D chemical space for 
the MLPCN screening set according to optimal compound 
dispersion across Cartesian space. 

• Use the first two descriptors to make a 2D chemical descriptor 
space, and map different sets of compounds into this space. 

• This MLPCN descriptor space was then partitioned into 600 equal 
bins in each axis (i.e. 360,000 cells). 

• BCUT Descriptors are obtained from the positive and negative 
eigenvalues of the adjacency matrix of a compound, weighting the 
diagonal elements with atom weights. 



Drug Likeness of MLPCN Compounds

• For each compound in MLPCN or ChemNavigator, identify its nearest 
neighboring compounds in approved drugs (most similar)

• Compound similarity: Daylight fingerprint FP2 and Tanimoto coefficients
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MLPCN Compounds vs. ChemNavigator Compounds



MLPCN Compounds vs. Approved Drugs



MLPCN Compounds vs. Metabolites



MLPCN Compounds vs. Natural Products



Summary (not in a definite 
sense)
 The MLPCN screening set is found to be a well-chosen subset of 

 Available drug-like small molecules 
 A highly diverse compound collection with greater biogenic bias 

than a comparable-sized set of commercially available 
compounds, 
 Incorporation of more metabolite-like chemotypes. 

 Enhance the screening set diversity by exploring regions of 
chemical space that are under-populated in the MLPCN set 
relative to other biogenic compound collections 
 Potentially enhance the quality of resulting bioassay data in ways 

suitable for advancing both basic research and rational drug 
discovery.
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Part III: Kernels for Chemical 
Activity Prediction
 Chemical Activity Prediction
 Chemical Graphs and Features
 Kernels for Structured Data
 Kernels for Chemical Graphs
 Path-based: random or all sequences of specific 

length
 Semi-structured: subtrees and cycles
 General subgraphs, alignment
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Chemical Activity Prediction

 Activity is observed chemical function
 Toxicity, binding affinity, intestinal absorption, etc.
 Important for screening candidate drugs

 Functional activity depends on structure
 Compounds with 'similar' structure might have 

similar function
 ‘Similar' structures, with similar activity, may share 

common structure features
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Chemical Graphs
Use graph representation for 
chemical activity prediction to 
retain rich expressivity
Transformation of chemicals 
to graphs is straight forward.

 Atoms correspond to 
vertices.

 Bonds correspond to edges.
 Vertices and edges are 

labeled with atom element 
and bond type, among other 
properties.
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Chemical Classification

 Machine learning tools typically require a 
numeric sample-feature matrix as the input 
representation.

 The classification of chemical graphs 
requires some way to embed them in a 
suitable space, either explicitly or implicitly.
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Embedding Graphs for 
Classification

Positive samples

Negative samplesDecision boundary

Boundary margins

2012/9/23 CHI SBD 67



Chemical Features

 The features describing a chemical graph 
embed it in a spatial representation.

 Chemical features take many forms, such as 
those describing an entire molecule, or those 
describing particular atoms.
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Examples of Features

[9, 5, … ]

# of atoms    # of bonds    . . .

Molecular Atomic
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Kernel Methods
 Instead of explicitly computing features, compare 

chemical graphs using a kernel function.
 This kernel matrix of pair-wise similarities embeds 

chemical graphs into a space suitable for 
classification.

 The kernel function between two objects replaces 
the inner product of two feature vectors in the 
classifier optimization problem.

 Shift from finding good classifier to finding good 
kernel function.
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Kernel Space Visualizations

2012/9/23 CHI SBD 71



R-Convolution Kernel
 Kernels between chemical graphs are defined  as cases 

of a general kernel between structured data, the R-
Convolution Kernel.

 The difference in kernel functions depends on the 
method used to decompose complex graph structures 
into simpler ones.

 See Haussler, D. Convolution Kernels on Discrete 
Structures. Technical Report UCSC-CRL099-10, 
Computer Science Department, UC Santa Cruz, 1999
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R-Convolution Definitions
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R-Convolution Equation 

Kernel between 
composite objects 

x and y

Sum over the 
parts of x and y

Product of kernels 
between parts of x

and y

2012/9/23 CHI SBD 74



Recursive Decomposition

 The R-convolution kernel framework allows 
for recursive application.

 For example, a kernel between chemical 
graphs may depend on a kernel between 
linear molecular fragments, which may in turn 
depend on a kernel between individual 
atoms.
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Recursive Decomposition
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Range of Decompositions

Simple Complex

- graphs
- trees

- cycles

- strings
- sets

- multi sets

- numeric 
vectors
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Path-based Kernels
 Construct kernels by computing shared path substructures
 Examples:

 Marginalized kernel - P. Mahé, et al. Graph kernels for molecular 
structure-activity relationship analysis with support vector 
machines. J Chem Inf Model, 45(4):939–51, 2005.

 Spectrum kernel - C. Leslie, E. Eskin, and W.S. Noble. The 
spectrum kernel: a string kernel for SVM protein classification. In 
Russ B. Altman, A. Keith Dunker, Lawrence Hunter, Kevin 
Lauerdale, and Teri E. Klein, editors, Proceedings of the Pacific 
Symposium on Biocomputing 2002.

 Perret, Mahe, Vert. Chemcpp: an open source C++ toolbox for 
kernel functions on chemical compounds. Software available at 
http://chemcpp.sourceforge.net 2007.
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Finding Shared Paths
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Marginalized Kernel (Mahé et al. 2005)

 Randomly generate a set of paths of a 
specified length from a chemical graph.

 Compute similarity for two chemical graphs 
based on the number of shared random 
paths.
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Spectrum Kernel (Leslie 2002)

 Generate all paths in a chemical graph up to 
or exactly equal to a specified length.

 Again, compute the similarity between two 
chemical graphs according to the number of 
common paths.
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Kernels with non-path 
Features
 Kernels with non-path features
 Examples:

 Cyclic patterns - Horvath, Gartner, Wrobel. 
Cyclic pattern kernels for predictive graph 
mining. Proceedings of the tenth ACM SIGKDD 
international conference on Knowledge 
discovery and data mining, 2004.

 Subtree kernel - P. Mahé and J.P. Vert. Graph 
kernels based on tree patterns for molecules. 
Technical Report HAL:ccsd-00095488, Ecoles
des Mines de Paris, September 2006.
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Cyclic Kernel (Horvath 2004)

 Index chemical graphs as a set of cyclic 
patterns.

 Such patterns are common in organic 
molecules.

 Example cycle patterns:
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Subtree Kernel (Mahé 2006)

 Like cycles, subtrees or branching patterns 
are common in biology, particularly in lipid-
type molecules.

 Subtrees are mined and chemical graphs are 
indexed by their presence or absence.

 Many small molecules are already trees:
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General Graph Kernels
 Some kernels take advantage of the rich chemical graph 

structure and perform as little decomposition as possible.
 Examples:

 Subgraph kernel - Mahé, Ralaivola, Stoven, and Vert. The 
pharmacophore kernel for virtual screening with support 
vector machines. Technical Report Technical Report 
HAL:ccsd-00020066, Ecole des Mines de Paris, march 
2006.

 Optimal Assignment kernel – Frohlich et al. Kernel 
Functions for Attriubted Molecular Graphs - A new 
Similarity-Based Approach to ADME Prediction in 
Classification. QSAR & Combinatorial Science 25(4), 
2006
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10/12/10

Subgraph Kernels

 Decompose chemical graphs into the most 
general substructure.

 Can mine patterns and compute similarity 
based on shared patterns.

 Many aspects of chemical activity are 
determined by functional groups or 
pharmacophores that can be represented as 
subgraphs and incorporated into a kernel. 
(Mahé 2006)
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Subgraph Examples
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Frequent Patterns in Chemical 
Graphs
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Pharmacophore Kernel
(Mahé 2006)

 Many molecular properties are determined by 
the existence of specific patterns that can 
attach to chemical scaffolds in a modular 
way.

 The 3-dimensional arrangement of these 
pharmacophores is also incorporated for 
chemical activity prediction.
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Optimal Assignment Kernel 
(Frohlich 2006)

 Instead of using a decomposition, two 
chemical graphs are aligned by matching 
vertices from one graph to the other.

 Computes a maximum weighted bipartite 
graph between to sets of vertices, but is not 
positive semi-definite as originally published.

 Uses a recursive matching function to align 
groups of vertices.
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Bipartite Graph
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Matching Vertices and 
Patterns

2012/9/23
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Protein-Chemical Interaction 

Samlter & Huan, IEEE/ACM Transaction of Bioinformatics and Computational Biology, 2010
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Kernel Based Similarity Search

 Using the kernel functions to define similarity 
 Scale up those kernel functions to chemical 

structure database search
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k-NN Classification Results 

Wang et al., Application of Kernel Functions for Accurate Similarity Search in Large Chemical Databases, 
BMC Bioinformatics Vol. 11 (Suppl 3):S8, 2010 
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k-NN Query Processing Time
 We applied a novel kernel-based 

similarity measurement to 
measure similarity of chemicals. 

 In our method, we utilize a hash 
table to support new graph 
kernel function definition, 
efficient storage and fast search. 
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Chemical Enrichment Study
 Obtained 110 inhibitors of focal 

adhesion kinase 1 (FADK 1) 
with AID810 from PubChem

 Randomly picked 20 chemical 
compounds. Augmented them to 
the NCI/NIH AIDS data set to 
form a new database

 Picked one chemical from these 
20 chemicals as the query 
chemical to search the new 
database and retrieve 100 
nearest neighbors

 Computed precision as the 
percentage of chemicals in the 
top k compounds belongs to the 
true 19 hits



Scalability of the Algorithm
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Additional Chemical Features

 Not limited to structure – much more data 
sometimes available
 In fact common structure will not always reveal 

common effect
 Whole picture of biological systems needed in reality

 Different ways of characterizing a drug 
(chemical) based on its effects and 
interactions
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Additional Chemical Features

 Not limited to structure – much more data 
sometimes available
 In fact common structure will not always reveal 

common effect
 Whole picture of biological systems needed in reality

 Different ways of characterizing a drug 
(chemical) based on its effects and 
interactions
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Part IV: Advanced Topics of Data 
Analysis in Drug Discovery
 Use Quantitative Structure Activity Relationship 

models
 Use machine learning, data mining, information 

retrieval, text mining, image analysis to understand 
information in a wide range of data types   

 Modeling a variety of end-points
 Protein-chemical interaction
 Gene-chemical interaction 
 Chemical toxicity
 Absorption, distribution, metabolism, and excretion (ADME) 

properties
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Additional Chemical Features

 Different ways of characterizing a drug:
 Interaction Profiles
 Chemical-protein interactions, chemical-genetic 

interactions
 Drug Effects (Phenotypical – text mining)
 Side effect profile
 Pharmacological effects

 In Vitro/ In Vivo test effects
 Genetic profiles, screening profiles



Interaction Profiles
 Characterize an object based on its interactions 

(interactome) with another set
 Similar idea to kernel methods

 Interaction networks (graph), binary vector or real-valued 
activity/interaction strength
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P1 P2 P3 P4 …
C1 1 0 0 1 …
C2 0 1 1 1 …
… …

Proteins of Interest

Compounds 
tested against 

proteins



Chem.-Protein Interaction 
Profile Example
 Chemical effects are usually result of multi-

protein interactions (Hopkins 2008)
 Proteome similarity good indicator of common effects

 (Yang 2009) exploited protein interactome of 
chemicals using data mining techniques for 
exploring Severe Adverse Drug Reaction 
(SADR)
 Determine common protein sub-groups
 Classify SADR using profile
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A. L. Hopkins, “Network pharmacology: the next paradigm in drug discovery.” Nature Chemical Biology 
4, 682 – 690, 2008.
L. Yang, J. Chen, and L. He, “Harvesting Candidate Genes Responsible for Serious Adverse Drug 
Reactions from a Chemical-Protein Interactome.” PLoS Comput Biol 5(7), 2009.



Chem.-Genetic Interaction 
Example
 Chems. with different structure can still share 

common effects! (structure isn’t always enough)
 (Parsons 2004, Parsons 2006) used chemical-

genetic profiles (a.k.a. hyper-sensitivity profiles) 
 To infer protein or pathway targets and 
 To identify pathways protecting against toxic effects of 

a drug
 Potentially providing info. about compound’s mode of 

action
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Parsons et al., "Integration of chemical-genetic and genetic interaction data links bioactive compounds 
to cellular target pathways." Nat. Biotechnol. 22:62–69, 2004.
Parsons et al., “Exploring the mode-of-action of bioactive compounds by chemical-genetic profiling in 
yeast.” Cell 126:611–625, 2006.



Chem.-Genetic Interaction 
Example
 Compounds with very different structures can 

have similar modes of action, captured by 
chemical-genetic profile
 E.g. two highly selective inhibitors of Hsp90, highly 

unrelated structurally, similar chemical-genetic profiles 
(Parsons 2006)

 Looked at inhibitors with yeast and gene 
knockout
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Parsons et al., "Integration of chemical-genetic and genetic interaction data links bioactive compounds 
to cellular target pathways." Nat. Biotechnol. 22:62–69, 2004.
Parsons et al., “Exploring the mode-of-action of bioactive compounds by chemical-genetic profiling in 
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Chem.-Genetic Interaction 
Example
 Chemical-genetic profile:
 Interaction is characterized by combination of 

chemical with gene knockout leading to cell death 
(or defects)
 Emerging high-throughput method

 ~5,000 yeast deletion mutants and up to 82 
compounds tested

 2-D hierarchical clustering and probabilistic sparse 
matrix factorization for visualization and to identify 
compounds with similar modes of action
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Parsons et al., "Integration of chemical-genetic and genetic interaction data links bioactive compounds 
to cellular target pathways." Nat. Biotechnol. 22:62–69, 2004.
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Side Effects as Features
 Adverse Drug Reactions (side effects) used to predict 

drug-target interactions
 (Campillos 2008) demonstrated how side-effects could reveal 

unknown interactions
 Drugs with similar (phenotypic) side-effect profiles used to predict 

common targets 
 Reveal existing FDA-approved drugs for one disease could be 

used for a different one
 E.g.: Rabeprazole (protein-pump inhibitor) used to treat 

stomach ulcers and pergolide (dopamine receptor agonist) 
have common side-effect profile – rabeprazole shown to bind 
to dopamine receptos (Campillos 2008)
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Side Effects as Features

 (Kuhn 2008) provides side-effect database 
free for academic use - SIDER:

http://sideeffects.embl.de/
 1,450 side effects, 888 drugs
 Drug side-effects were collected using text mining 

approach from package inserts of drugs –e-format
 From public sources such as FDA
 Coding Symbols for a Thesaurus of Adverse 

Reaction Terms (COSTART) - side effect lexicon
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6:343, 2009.



Pharmocological Effects

 (Yamanishi 2010) used chemical structure, 
protein sequence, and general phenotypic 
effects of the chemicals to predict chemical-
protein interaction network

 Pharmocological effects:
 keywords for drugs were obtained from the JAPIC 

(Japan Pharmaceutical Information Center) 
database - 18,653 keywords in total 

 Grouped: pharmaceutical effects, adverse effects, 
caution, usage, properties, etc. (general text info.)
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Pharmocological Effects
 “Pharmaceutical effects” key words used as 

binary features
 Two step process:

 Use known pharmacological effects to predict 
unknown ones in chemicals (regression model)

 Use known and predicted pharmacological 
features to predict drug target interaction 
network
 Embed drugs in targets into a unified space, and use 

distance threshold to determine interaction
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Yamanishi et al., “Drug-target interaction prediction from chemical, genomic and pharmacological data 
in an integrated framework" ISMB, 2010.



Relationship Between Chemical and 
Pharmacological Spaces w.r.t Drug 
Targets

*Figure taken with permission from (Yamanishi 2010) 
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In Vitro Screening

 In vitro (test tube) experiments can be 
designed to measure indicators of a drug’s 
effects – features
 E.g. measure gene expression, transcriptional 

responses, protein function, etc. of samples/cells 
of interest combined with drugs

 E.g. (Iorio 2010), (Judson 2010)
 High-throughput screening approach (HTS) 

quicker, less expensive then obtaining end-points
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Iorio et al., "Discovery of drug mode of action and drug repositioning from transcriptional responses." 
PNAS 107(33), 2010.
Judson et al., In Vitro Screening of Environmental Chemicals for Targeted Testing Prioritization: The 
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In Vitro Screening
 U.S. Environmental Protection Agency’s 

(EPA) ToxCast Program (Judson 2010)
 Phase I profiled >300 chiefly pesticide chemicals
 Over 400 HTS endpoints collected - biochemical 

assays of:
 protein function
 cell-based transcriptional reporter and gene 

expression
 cell line and primary cell functional
 developmental endpoints in zebrafish embryos and 

embryonic stem cells
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In Vitro Screening
 U.S. Environmental Protection Agency’s 

(EPA) ToxCast Program (Judson 2010)
 ~$2 billion in animal toxicity studies
 Battery of toxicology methods to obtain reliable toxicity 

end-points:
 Developmental toxicity, multi-generation reproductive 

studies, sub-chronic and chronic rodent bioassays, etc.

 Phase II will expand chemicals tested – more and 
wider variety
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Nature of Non-Structure 
Features

 Typically all expensive to obtain 
 Unlike structure-based chemical descriptors that are 

fast, inexpensive, and easy to obtain
 Missing values – not all information is available for 

all drugs, all features, etc.
 e.g. missing protein interactions, only tested for some 

compounds, some proteins, different proteins for 
different compounds

 In vitro and in vivo tests expensive, not likely to get for 
all data e.g. EPA data – time and cost

 Missing pharmacological effects
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Nature of Non-Structure 
Features

 Typically all expensive to obtain 
 Transfer learning:
 As a result, must make use of what labeled data 

available
 Expensive and time-consuming to obtain end-points and 

additional features for specific set of chemicals or e.g. 
targets

 However chemical space is huge, we must consider 
effects of selection bias when using existing available 
data to reduce time and cost
 Different targets, sets of chemicals, different marginal or 

conditional distributions – transfer learning
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Nature of Non-Structure 
Features

 Another potential solution: adaptive data 
mining techniques
 E.g. active learning 
 Adaptively determine what information is most 

necessary (which compounds to test, etc.) to 
achieve some goal, e.g. elucidate chemical 
activity model
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Adaptive Approaches to Drug 
Discovery
 Computational methods could make drug 

development process more adaptive
 Adaptive techniques could improve efficiency and 

success (reduce costs) of drug discovery process
 Model P(drug high success | drug descriptor, drug 

combinations/conditions, sample indicators, etc.)
 To better understand P(Y|X), choose most informative test

 Active learning
 Bayesian Clinical Trials
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Adaptive Approaches to Drug 
Discovery
 Active learning with computational models of 

activity can aid in hit/lead identification
 Drug Discovery Process:
 Identify Target
 Test an initial set of chemicals against target (HTS)
 Based on results refine activity model (chemist or 

machine)
 Suggest next set of chemicals to test
 Repeat…
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Adaptive Approaches to Drug 
Discovery
 Active learning:
 Repeated tests – but tests cost
 Ability to choose which instances to obtain label
 Exploit choice to identify most hits or reveal most 

info. about activity model as quickly as possible

 E.g. Warmuth et al. 2003, SVM approach 
to identify candidate drugs to screen
 Farthest from hyperplane – most certain
 Closest to hyperplane – most uncertain
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Adaptive Approaches to Drug 
Discovery
 Maintaining and updating model of drug 

success – also apply to other phases
 Highlight: “Bayesian Clinical Trials” (Berry 

2006)
 Adaptive, computational approaches successfully 

used to help regulate clinical trials
 Case study of FDA approved drug
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Conclusions
 Drug discovery is a very very 

expensive process
 Enormous opportunities for data 

analytics. 
 Data are increasingly becoming 

publically available 
 No one knows the best practice to 

discovery a drug (even big pharms 
in the business >100 years)

 Challenges:
 Do not underestimate the beast! 
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Questions?
 Dr. Jun (Luke) Huan

Associate Professor 
Department of Electrical Engineering and Computer 

Science
University of Kansas
jhuan@ku.edu
http://people.eecs.ku.edu/~jhuan

 I thank CHI and KU Special Chemistry Center for 
sponsoring my talk
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