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Why Talking about Data Mining In
Drug Discovery

e Drug discovery is highly data driven
Chemical structure
Protein sequence, structure, and expression
Genome and gene
Biological network
Pharmacokenetics and pharmacodynamics
Data are increasingly becoming public available
Having ample data, demanding more knowledge!

e We see many different data types

Vector, semi-structured, time-series, spatial-temporal, images, video, hypertext,
literature

e Data analysis and data management challenges are from all aspects

Large volume, high dimensional, high noise, large amount of missing values, non iid
data, structured input and output, unlabeled data

Multi-instance (label, class, task)

e Spans the full data analysis cycles
Data collection, data cleasing, data semantics, data integration, data representation
Model inference, model selection, modal average, model interpretation
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Outline

e Drug Discovery Pipeline
e Overview of PubChem

e Chemical Structure Based Prediction
Problems with Kernel Methods

e Advanced Topics of Data Analysis in Drug
Discovery

2012/9/23 CHI SBD 6



Part I: Drug Discovery Pipeline

e Overview of Drug Discovery and Development

e Pre-discovery of Drugs

Target identification/validation, assay development, hit
identification, lead identification, early safety tests, lead
optimization, preclinical testing

e Drug Discovery

Investigational new drug (IND), clinical trials phase I, II, and
lIl, new drug application (NDA), manufacturing, post-
market analysis

e Concluding Remarks

2012/9/23 CHI SBD 7



Selected Landmarks in Drug Discovery

Timeline | Selected evolutionary landmarks in drug discovery

FDA approval for human insulin Human Genome Project FDA approval for Rituxan
(Genetech/Lilly). Initiated. (Genentech/IDEC).
I I I Cancer, cardiovascular
The first protein-based therapeutic First gene therapy experiments The first humanized disease and stroke
First transgenic or knockout mouse in humans monoclonal antibody for remain leading causes
- : cancer viracept of death in the united FDA approves 17 NCEs,
Aptamers discovered. I SiEEE, compared with 23 in

An HIV protease inhibitor

T 1990; approves 44 new

Protein Data Bank of approyed byfda; Venture capital funding | | formulations of old drugs.
X-ray crystal CKT3 approved as the first for biotechnology |

structures established non-human monoclonal Ellman reports combinatorial ventures peaks atus Lipitor (Pfizer) annual sales
with 12 structures antibody theraputic. benzodiazepine library $6 billion reach us $8 billion

1991 1992 1993 1997 1998 2000 2001 2002 2003

Kohler and Milstein report first FDA approval for Pharmacopeia founded Draft sequence of the human| (More than2,500
monoclonan antibodies Epogen (Genetech) in princeton, nj. genome published in nature | |companies worldwide
ARAEAERES engaged in the

= application of novel
. : Vitravene(lsis/Novartis) Mckinsey/Lehman Fruits of | |teéchnologies todrug
Bruce Merrifield awarded Affymetnx, the f|r§t becomes the first antisense Genomicys report predicts discovery
Nobgl Prize for sphd-phase microarray/microchip drug approved for treatment of productivity crisis for
peptide synthesis company, founded cytomegalovirus retinitis pharmaceutical industry.

I
Big pharma R&D budget
averages us $800 million per
new chemial entity.

. 2012/9/23 e CH) SBD . . 8
Figure adopted from: L.J. Gershell et al. A brief history 01! novel drug discovery technologies, Nat. Rev. Drug

Discov. 2, 321-327 (2003)




Overview: Drug Discovery and Development

e Highly Interdisciplinary: Recent
advances in genomics, proteomics and
computational power pr_esent new ways Tissue
to understand human diseases at the i LI
molecular level.

Pharmacology Molecular

Biology

= High Attrition Rate: For every 5,000- _ :
10,000 compounds that enter the Chemistey Technology
research and development (R&D)
pipeline, ultimately only one receives

Cell Biol Screenin
approval. =R =0y =

e Complex: Success requires immense
resources — the best scientific minds,
highly sophisticated technology, complex
project management, and sometimes,

2012/9/23
luck.



Timescale: Drug Discovery and Development 0000

DRUG DISCOVERY m CLINICAL TRIALS FDA REVIEW] LG-SCALE MFG

ONE FDA-
APPROVED

PRE - DISCOVERY

PHASE 4: POST - MARKETING SURVEILLANCE

P IND SUBMITTED
» NDA SUBMITTED
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Figure aélopted from the brochure of INNOVATION.OR& ‘%rug Discovery and Development: Understanding the

R&D Process”.




000
_ o000
Process: Drug Discovery and Development eseee
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e This whole process takes an average of 10-15 years. ce
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Early knowledge:
improved decision-making
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Figure adopted from: M.A. Cooper, Optical biosensors in drug discovery, Nat. Rev. Drug Discov. 1, 515-528(2002)




Drug Discovery: Assay Development ece.

00
High-throughput Screening is a widely used approach to identif:wleads.

e Advances in robotics and computational power allow researchers to test
hundreds of thousands of compounds against the target to identify any that
might be promising.

2012/9/23 12

Cited from the Internet: hitp://www.osip.com/scires_coretech




Drug Discovery: Lead Identification 0ceo
0000

e Newly invented pharmacologically active moieties may have poof @rug-
likeness and may require chemical modification to become drug-like
enough to be tested biologically or clinically.

e A lead compound is a starting point for chemical modifications in order
to improve potency, selectivity, or pharmacokinetic parameters.

: - Clinical \\ Regular
g T (o S Sy at o e Doveapmont - Approal
Validdation | developmen g creening ptimization p Phases I-Ill ~ Manufacture
4 4 4

De-orphaning receptors together Serum-protein and lipid-binding
with MS assays

QC in GLP/GMP environments

Functional binding assays

Higher-information-content screening giving affinties and kinetics Monitoring of drug serum levels etc.

l High-throughput screening of arrayed targets and ligands

. 2012/9/23 : : CHISBD . : : 13
Figure adopted from: K.H. Bleicher et al. Hit and Lead éeneratlon: Beyond High-throughput Screening, Nat. Rev.

Drug Discov. 2, 369-378 (2003)




Drug Discovery: Early Safety
Test

e Lead compounds go through a series of tests (ADME/Tox) to
provide an early assessment of the safety of the lead compound.

e Successful drugs must be:
Absorbed into the bloodstream,;
Distributed to the proper site of action in the body;
Metabolized efficiently and effectively;
Excreted from the body successfully;
demonstrated to be not Toxic.

e These studies help researchers prioritize lead compounds early
In the discovery process. ADME/Tox studies are performed in
living cells, in animals and via computational models.

2012/9/23 CHI SBD 14



Drug Discovery: Lead
Optimization

Lead compounds that survive the initial screening
are then “optimized,” or altered to make them more
effective and safer.

By changing the structure of a compound, its
properties can be changed, e.g. making it less likely
to interact with other chemical pathways and thus
reducing the potential for side effects.

Even at this early stage, researchers begin to think
about how the drug will be made, considering
formulation and large-scale manufacturing.

The resulting compound is the candidate drug.

2012/9/23 CHI SBD 15



Case Study of Lead Optimization
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CRAF inhibitor from HTS Potent lead
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Combinatorial variation of the two substituents on the central urea generated a
potent lead (red). Lead optimization focused on improving potency and in vivo

activity (blue).
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NVP-LAK974
HDAC inhibitor from HTS
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NVP-LAQSB24
Clinical candidate
HDAC inhibitor

The hydroxamate zinc-binding functionality typical of many HDAC inhibitors (red).
Lead optimization to the clinical candidate NVPLAQ824 concentrated on
Improvements to in vivo activity and tolerability (blue).
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Drug Discovery: Preclinical
Testing

e With one or more optimized compounds, lab anc

animal testing is used to determine if the drug Is
safe enough in humans:

2012/9/23

The FDA requires extremely thorough testing before the
candidate drug can be studied in humans;

In vitro and in vivo tests (in living cell cultures and animal
models) are carried out to understand how the drug works
and what its safety profile looks like.

First scale up: how to make large enough quantities of the
drug for clinical trials.

From 5,000 to 10,000 compounds, one to five molecules,
called “candidate drugs,” will be studied in clinical trials.

CHI SBD 17
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Clinical Cost by Therapeutic Category

CNS 527

Antiinfective 130 492

All 184 466

Cardiovascular 183 460

Analg/Anesth 2592 123 375

B Time Value

I Out-of-Pocket |

0 100 200 300 400 500 600
Millions of US$ at 2000
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o0
Drug Development: Phase | Clinical Trial oo
[ X
o0
[ )

e Initial testing in a small group of healthy volunteers for safety

e These studies are usually conducted with about 20 to 100 healthy volunteers.
e The main goal of a Phase 1 trial is to discover if the drug is safe in humans.

e Researchers look at the pharmacokinetics of a drug: How is it absorbed? How
Is it metabolized and eliminated from the body? Does it cause side effects?
Does it produce desired effects?

e These closely monitored trials are designed to help researchers determine
what the safe dosing range is and if it should move on to further development.

. 2012/9/23 CHI
Figure adopted from the brochure of INNOVATION.ORG

R&D Process”.
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o0
Drug Development: Phase Il Clinical Trial -
o

e Phase 2a and 2b Trials: Sometimes combined with a Phase 1 trial

e Phase 2a trial is aimed not only at understanding the safety of a
potential drug, but also getting an early read on efficacy and dosage
iIn a small group of patients.

e The resulting Phase 2b trial would be designed to build on these
results in a larger group of patients for the sake of designing a
rigorous and focused Phase |11 trial.

19/
Figurez%% géged from the brochure of |NNOVAT|ON.ORC&I§BII?UQ Discovery and Development: Understandingzjlthe

R&D Process”.



Drug Development: Phase Ill Clinical Trial

e Test in a large group of patients to show safety and efficacy

e Study the drug candidate in a larger number of patients: about 1,000-5,000;

e Generate statistically significant data about safety, efficacy and the overall
benefit-risk relationship of the drug;

e Key in determining whether the drug is safe and effective;

e Provides the basis for labeling instructions to help ensure proper use of the
drug (e.g., information on potential interactions with other medicines).

2012/9/23 CHI SBD 22



Drug Development: New Drug Application (NDA)

e |If the results of all three phases of clinical trials show that the drug ‘s
both safe and effective, a NDA with the FDA requesting approval to
market the drug.

e |t can be as long as 100,000 pages or more;

e The NDA includes all of the information from the previous years of work, as
well as the proposals for manufacturing and labeling of the new medicine;

e The FDA can either approve or deny the NDA. It may issue an “approvable”
letter requesting more information or studies before approval can be given;

e Review of an NDA may include an evaluation by an advisory committee.
Committees vote on whether the FDA should approve an application, and

under what conditions.

2012/9/23 CHI SBD 23



What if Phase Ill Fails? 00000
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Post-approval Clinical Trial: Phase IV

e Research on a new medicine continues even after approval.

e As a much larger number of patients begin to use the drug, companies
must continue to monitor it carefully and submit periodic reports,
iIncluding cases of adverse events, to the FDA.

e In addition, phase V clinical trials can be set up to evaluate long-term
safety or how the new medicine affects a specific subgroup of patients.

2012/9/23 CHI SBD 26



Post-approval Clinical Trial: Phase IV

e Some drugs have been withdrawn from the market because of risks®to
the patients, and unexpected adverse effects were not detected |during
Phase 11l clinical trials and were only apparent from the wider patient
community.

Drug Time Withdrawn Risk/Reason of Being Withdrawn

Thioridazine 2005, U.K. cardiotoxicity

Pemoline 2005, U.S. hepatotoxicity

Natalizumab 2005, U.S. Progressive multifocal leukoencephalopathy (PML). Returned to market on July, 2006
Ximelagatran 2006 hepatotoxicity (liver damage).

Pergolide 2007, U.S. heart valve damage. Still available elsewhere.

Tegaserod 2007 imbalance of cardiovascular ischemic events, including heart attack and stroke.

Aprotinin 2007 increased risk of complications or death; permanently withdrawn except for research use
Inhaled insulin 2007, U.K. national restrictions on prescribing, doubts over long term safety and too high a cost
Lumiracoxib 2007-2008 serious side effects, mainly liver damage

Rimonabant 2008 severe depression and suicide

Efalizumab 2009 increased risk of progressive multifocal leukoencephalopathy

Sibutramine 2010, Europe increased cardiovascular risk. This drug continues to be available in the U.S.
Gemtuzumab 2010, U.S. increased risks of veno-occlusive disease and no benefit in acute myeloid leukemia (AML)
0zogamicin

Rosiglitazone 2010, Europe increased risk of heart attacks and death. This drug continues to be available in the U.S.
2012/9/23 CHI SBD 27
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A Recent Case

e Pfizer Prepares for Voluntary Withdrawal of
U.S. New Drug Application and for
Discontinuation of Commercial Availability of
Mylotarg.

e “After extensive discussions with the FDA,
Pfizer has decided to withdraw the NDA
effective October 15, 2010.”

Press release from Pfizer
http://www.pfizer.com/home/

2012/9/23 CHI SBD 28



Concluding Remarks

e Each success is built on many, many prior failures.

e Advances in understanding human biology and diseases are opening up
exciting new possibilities for breakthrough medicines.

e Researchers face great challenges in understanding and applying these
advances to the treatment of diseases.

Duration Stage
Various Pre-discovery
Goal: Understand the disease and choose a target molecules.
How: Scientists in pharmaceutical research companies, government, academic
and for-profit research institutions contribute to basic research.
3~6 years Discovery

Goal: Find a drug candidate.
How: Create a new molecule or select an existing molecules as the starting point. Perform
tests on that molecule and then optimize (change its structure) it to make it work better

Preclinical
Goal: Test extensively to determine if the drug is safe enough for human testing.
How: Researchers test the safety and effectiveness in the lab and in animal models.

2012/9/23
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: 000
Concluding Remarks o000
[ X ]
6~7 years | IND bt
Goal: Obtain FDA approval to test the drug in humans.
How: FDA reviews all preclinical testing and plans for clinical testing to determine if the drug
is safe enough to move to human trials.
Clinical Trials
Goal: Test in humans to determine if the drug is safe and effective.
How: Candidate drug is tested in clinical setting in three phases of trials, beginning with tests
in a small group of healthy volunteers and moving into larger groups of patients.
05~2 Review
years Goal: FDA reviews all results to determine if the drug can be approved for patients to use.
How: The FDA reviews hundreds of thousands of pages of information, including all clinical
and preclinical findings, proposed labeling and manufacturing plans. They may solicit
the opinion of an independent advisory committee.
Manufacturing
Goal: Formulation, scale up and production of the new medicine
Ongoing Studies
Goal: Monitor the drug as it is used in the larger population to catch any unexpected serious
side effects.
Total
How much: $800 million - $1 billion
How long: 10 — 15 years
2012/9/23 CHI SBD 30
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Bottleneck in Drug Discovery

Ré&D spending vs. FDA approvals, 1996-2006

R&D costs continue ..yet fewer
drug approvals

0
96 97 98 99 00 01 02 03 04 05 06 96 97 98 99 00 01 02 03 04 05 06
Sources: PhRMA 2007; FDA, 2007 Figure 1
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Part Il: Drug Discovery Related
Programs in the Public Sectors

NIH Roadmap Molecular Libraries and Imaging
project aims to profile millions of chemicals and
their interactions with biological systems each
year.

EPA routinely performs testing of chemicals and
evaluate their toxicities.

Large pharmaceutical companies screening and
profiling millions of chemicals each year

FDA is investigating new technology for
evaluating the interactions between chemicals
and biological systems

Results are freely available in the PubChem
database.

2012/9/23 CHI SBD
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Molecular Probe Discovery

e NIH Roadmap Molecular Libraries and
Chemical Probes Program

2012/9/23

A research program designed to develop small
organic molecules that can be used as chemical
probes to study the functions of genes, cells &
biochemical pathways,

Goal: providing new ways to explore the functions
of major components of cells in the functions of
major components of cells in health & disease

CHI SBD 33



MLPCN

e US National Institute of Health (NIH) Molecular Libraries Probe
Production Centers Network MLPCN Program with 9 centers

Comprehensive Centers: Provide all three services: assay,
cheminformatics/informatics, and medicinal chemistry within a
single site. Broad, Burnham, NCGC, and Scripps are
comprehensive centers.

Specialized Screening Centers: Handle specialized types of
assays including handling assay informatics. Johns Hopkins,
Southern Research Institute, and UNM are specialized screening
centers.

Specialized Chemistry Centers: Focus on providing medicinal
chemistry and cheminformatics support for performing structure-
activity relationships that is typically needed to produce useful
chemical probes from screening hits. These are located at
Kansas and Vanderhilt.

e $500M/6 years

2012/9/23 CHI SBD 34



Chemical Probe

e A potent, selective, and cell-permeable small
molecule that modulates a specific
biochemical or cellular functions and provides
a useful tool for biomedical and biological
research.

e Comparing to gene knock-out/in techniques
and RNAI techniques, small molecule probes
can target a specific site of a cell’'s chemical
machinery, thus provides information on a
specific step in a network of cell functions.

2012/9/23 CHI SBD 35



Probe & Drug?

e |deal Probe? (S. Frye, NCB, pp. 159-162,
March 2010)

2012/9/23

Target selectivity: paralogs, orthologs, genes in
the same pathway, genes important for
pharmacodyhnamics

Connection between the cellular phenotype and
the molecular mechanism: pharmacology,

Toxicity and stabllity
Avallablility and synthesis feasibility

CHI SBD 36



Probe & Drug?

e Not as top priorities:
Oral bioavailability
Tendency to be metabolized
Half-time
Cost of manufacture

2012/9/23 CHI SBD
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PubChem Web Portal

All screening and compound data from the MLI phases are freely

available to the public via a web portal called PubChem

Annotated information about the bioactivities of small molecules
Chemical structures and compound probe information

A fast chemical structure similarity search tool.

PubChem

@ Biooszay DD Compound @ Substance

d d
| | FEON ety

Chemical structure search | BioActivity analvysis

rlew Structures frorm TCI (Tokyo Chemical Industry) are now available in
PubZher.

more ... i

Write to Helpdesk | Disclaimer | Privacy Statement | Accessibility

2012/9/23 Mational Center for Biot€dHogy Information

MLM | MIH | HHS
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Exploratory Analysis

e EXxploring the utility of MLPCN data (screening
results, target proteins, and small molecules) in the
future therapeutic exploration

e Comparison and analysis of MLPCN targets and
drug targets
Novelty of MLPCN targets

MLPCN targets are a promising source for new drug
targets

e MLPCN screening compounds vs. approved drugs,
metabolites, and natural products

Increase its drug-likeness and biogenic bias

2012/9/23 CHI SBD 39



Fact Sheets (as of Jan 2009)

Total Number of Bioassays 1,306
Number of Target-based 672
Bioassays

Number of Cell-based Bioassays 634
Number of Bioassays with Active 1,126
Compounds

Number of Active Compounds in 151,930
all assays

Number of Bioassay-Compound 555,859
Pairs

Number of Bioassay Pairs with at | 124,442
least one shared compounds

2012/9/23

CHI SBD

Zhang, Lushington, and Huan, Characterizing
the Diversity and Biological Relevance of the
MLPCN Assay Manifold and Screening Set,
Journal of Chemical Information and Modeling,
Vol. 51, No. 6, pp. 1205-1215, 2011
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Some Terminologies

e MLPCN targets: 200 distinct protein extracted from 680 target-
based bioassay from MLPCN screening

e MLPCN screening set: a compound set collected from 23
bioassays deposited between May 1 — July 22, 2009

A compound is selected if it was tested in 21 of the 23 assays
(i.e. 90%)
279,768 compounds obtained

e Random ChemNavigator set: 279,768 compounds randomly
extracted from the ChemNavigator compound collections

ChemNavigator: a library of commercially available small
molecules

2012/9/23 CHI SBD 41



PubChem BioAssays

Anticancer
(im vitro & mice)

Miscellaneous

36%

ell Growth

nti—viral &
microbial

Purposes of Cell-based Assays

2012/9/23

2% Other

Homo sapiens
B81%

Organisms of MLPCN targets
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MLPCN Targets

o 289 target proteins are extracted from 680 target-based bioassays

« 200 distinct proteins are obtained from converting 215 gene symbols

« 113 MLPCN targets are identified as enzymes

Unknown
14%

Intracelhular
20%

Membrane
19%

Subcellular locations
2012/9/23
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Transferase of
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Ligase 294
lsomerase 2%
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Oxidoreductases
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Cellular functions of 113 targets \

CHI SBD 3



Statistics of PubChem BioAssays
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MLPCN Targets and Drug Targets

 Needleman-Wunsch global alignment (gap open =11, extension = 1)
between MLPCN targets and drug targets

* 500 human proteins randomly selected from GenBank as control set

100

—— MLPCN targets
B0 —— Randam GenBank Proteins

h
=
I

Percentage of Proteins (%)
Y
=]

P
L=
I

o 20 40 60 80 100
2012/9/23 Protein Sequence Identity tigpproved Drug Targets (%) 45



MLPCN Targets and Drug Targets

A MLPCN target is defined as “similar” to drug targets if its sequence

MLPCN target weighted counts vs. total number of targets in PubChem

MLPCN Targets Homologous to Drug Targets (%)

60

50

40 -

30

identity to at least one drug target is >= 30%

0

| | 1 | | 1
80 160 240 320 400 480 560 640

Number of Target—based BioAssays Deposited



UniHI: Human Protein-Protein Interaction Network

UniHI is a unified human PPI network containing over 250,000 human
PPIs collected from 14 major PPI sources with careful data integration
and literature curation.

One of the largest human PPI networks, with various confidence
scoring systems for each PPI

Unified Human Interactome

UniHI search: User can provide a set of proteins to obtain their finctional information and interaction partners. UniHI search visualization tool offers many
options to filter interactions. Identified network can be filtered based on source of interactions or amount of evidence. Additionally, it also provides the
possibility to determine the common interacting partners or direct interaction between query proteins.

Choose the protein identifier to be used Gene Symbol (GS) -

Enter your protein or list of proteins (maximum 30 proteins)  HD, PRPF40A, CRMP1, SH3GL3
separated by any delimiter: comma, space, tab or newline.

See an example. Search is also possible using wild card "*"

for the protein identifier category "Gene Symbol". Check an

example for firther details.




Subcellular location of MLPCN and Drug Targets

« Subcellular location of 182 MLPCN targets, and 1035 drug targets from
NCBI Entrez Gene and Gene Ontology databases

o 347 random human proteins from UniHI as control set
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Distribution of Shortest Path Lengths

Shortest Path Length: the smallest number of PPIs between any MLPCN

Percentage of Occurences (%)

target to any drug target in the UniHI network (graph)

Control set: shortest path length between any two proteins in UniHI
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I AllUniHI SPLs

% 1 11 12 13
Shnretst Path Length in UniHI



Degree Distribution in UniHI

« Network degree: the number of interacting proteins of a given protein in
the UniHI network (graph)

e Control: 347 random human proteins in UniHI
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Protein Degree in UniHI
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A Few Remarks

e Shortest path length analysis shows that the MLPCN targets
are clustering around drug targets, and revealed that the
MLPCN tends to sample pathways that have already been
therapeutically targeted.

e This significant difference in median degrees of MLPCN and
known drug targets implied that MLPCN targets are somewhat
distinct relative to current drug targets, and thus may
theoretically afford novel avenues for eventual therapeutics
development.
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Compound Diversity Analysis

 When designing an optimal screening library for MLPCN bioassays, a
crucial step is to assess its chemical space coverage, structural novelty,
pharmaceutical and biological relevance compared to other important
compound collections

» Characterizing the chemical space defined by a compound set
« Extract features (descriptors) from each compound

 Map each compound into an N-dimensional space consisting of N
molecular structural features and properties

* This descriptor set enabled us to compare how two compound sets
distribute in the same chemical descriptor space.




Compound Diversity Analysis (2)

« Software: Tripos DiverseSolutions program

o Calculate the BCUT descriptors for all sets of compounds,

» Auto-select three descriptors to best define a 3D chemical space for
the MLPCN screening set according to optimal compound
dispersion across Cartesian space.

» Use the first two descriptors to make a 2D chemical descriptor
space, and map different sets of compounds into this space.

 This MLPCN descriptor space was then partitioned into 600 equal
bins in each axis (i.e. 360,000 cells).

« BCUT Descriptors are obtained from the positive and negative
eigenvalues of the adjacency matrix of a compound, weighting the
diagonal elements with atom weights.



Drug Likeness of MLPCN Compounds

 For each compound in MLPCN or ChemNavigator, identify its nearest
neighboring compounds in approved drugs (most similar)

« Compound similarity: Daylight fingerprint FP2 and Tanimoto coefficients
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MLPCN Compounds vs. ChemNavigator Compounds
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MLPCN Compounds vs. Approved Drugs
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MLPCN Compounds vs. Metabolites
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MLPCN Compounds vs. Natural Products
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Summary (not in a definite
sense)

e The MLPCN screening set is found to be a well-chosen subset of
Available drug-like small molecules

A highly diverse compound collection with greater biogenic bias
than a comparable-sized set of commercially available
compounds,

Incorporation of more metabolite-like chemotypes.

e Enhance the screening set diversity by exploring regions of
chemical space that are under-populated in the MLPCN set
relative to other biogenic compound collections

Potentially enhance the quality of resulting bioassay data in ways
suitable for advancing both basic research and rational drug
discovery.
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Part lll: Kernels for Chemical
Activity Prediction

e Chemical Activity Prediction
e Chemical Graphs and Features
e Kernels for Structured Data

e Kernels for Chemical Graphs

Path-based: random or all sequences of specific
length

Semi-structured: subtrees and cycles
General subgraphs, alignment
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Chemical Activity Prediction

e Activity Is observed chemical function
Toxicity, binding affinity, intestinal absorption, etc.
Important for screening candidate drugs

e Functional activity depends on structure

Compounds with 'similar' structure might have
similar function

‘Similar' structures, with similar activity, may share
common structure features
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Chemical Graphs

.Use graph representation for
chemical activity prediction to
retain rich expressivity

o | ransformation of chemicals

to graphs is straight forward.

Atoms correspond to
vertices.

Bonds correspond to edges.

Vertices and edges are
labeled with atom element
and bond type, among other
properties.

2012/9/23 CHI SBD
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Chemical Classification

« Machine learning tools typically require a
numeric sample-feature matrix as the input
representation.

« The classification of chemical graphs
requires some way to embed them in a
suitable space, either explicitly or implicitly.
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Embedding Graphs for
Classification

Decision boundary Negative samples

\ /
\

Positive samples Boundary margins
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Chemical Features

« The features describing a chemical graph
embed It In a spatial representation.

« Chemical features take many forms, such as
those describing an entire molecule, or those
describing particular atoms.
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Examples of Features
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Kernel Methods

 Instead of explicitly computing features, compare
chemical graphs using a kernel function.

« This kernel matrix of pair-wise similarities embeds
chemical graphs into a space suitable for
classification.

« The kernel function between two objects replaces
the inner product of two feature vectors in the
classifier optimization problem.

« Shift from finding good classifier to finding good
kernel function.
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Kernel Space Visualizations
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R-Convolution Kernel

. Kernels between chemical graphs are defined as cases
of a general kernel between structured data, the R-
Convolution Kernel.

. The difference in kernel functions depends on the
method used to decompose complex graph structures
Into simpler ones.

. See Haussler, D. Convolution Kernels on Discrete
Structures. Technical Report UCSC-CRL099-10,
Computer Science Department, UC Santa Cruz, 1999
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R-Convolution Definitions

r € X be a composite object
T =2x,..,rp € X1 X ... x Xp are its parts
R defined on X7 X ... x Xp x X

R(Z, x) true iff  are the parts of x

R Yz)={7: R(Z,2)}
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R-Convolution Equation

(L

=SS [N

TER— I ( T ) ; 37 = il (y i ]

Kernel between Sum over the Product of kernels
composite objects parts of x and y between parts of x
x andy andy
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Recursive Decomposition

« The R-convolution kernel framework allows
for recursive application.

. For example, a kernel between chemical
graphs may depend on a kernel between
linear molecular fragments, which may in turn
depend on a kernel between individual
atoms.
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Recursive Decomposition
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Range of Decompositions

Simple <

> Complex

- numeric - strings
vectors - sets
- multi sets

2012/9/23 CHI SBD

- graphs
- trees
- cycles
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Path-based Kernels

« Construct kernels by computing shared path substructures

. Examples:

2012/9/23

Marginalized kernel - P. Mahé, et al. Graph kernels for molecular
structure-activity relationship analysis with support vector
machines. J Chem Inf Model, 45(4):939-51, 2005.

Spectrum kernel - C. Leslie, E. Eskin, and W.S. Noble. The
spectrum kernel: a string kernel for SVM protein classification. In
Russ B. Altman, A. Keith Dunker, Lawrence Hunter, Kevin
Lauerdale, and Teri E. Klein, editors, Proceedings of the Pacific
Symposium on Biocomputing 2002.

Perret, Mahe, Vert. Chemcpp: an open source C++ toolbox for
kernel functions on chemical compounds. Software available at
2007.
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Finding Shared Paths

ﬁ*%%\

CCCCCC




Marginalized Kernel (Mahe et al. 2005)

« Randomly generate a set of paths of a
specified length from a chemical graph.

. Compute similarity for two chemical graphs
based on the number of shared random
paths.
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Spectrum Kernel (Leslie 2002)

« Generate all paths in a chemical graph up to
or exactly equal to a specified length.

« Again, compute the similarity between two
chemical graphs according to the number of
common paths.
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Kernels with non-path
Features

« Kernels with non-path features

. Examples:

Cyclic patterns - Horvath, Gartner, Wrobel.
Cyclic pattern kernels for predictive graph
mining. Proceedings of the tenth ACM SIGKDD
International conference on Knowledge
discovery and data mining, 2004.

Subtree kernel - P. Mahé and J.P. Vert. Graph
kernels based on tree patterns for molecules.
Technical Report HAL:ccsd-00095488, Ecoles
des Mines de Paris, September 2006.
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Cyclic Kernel (Horvath 2004)

« Index chemical graphs as a set of cyclic
patterns.

« Such patterns are common In organic
molecules.

« Example cycle patterns:

[
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Subtree Kernel (Mahé 2006)

« Like cycles, subtrees or branching patterns
are common in biology, particularly in lipid-
type molecules.

« Subtrees are mined and chemical graphs are
iIndexed by their presence or absence.

. Many small molecules are already trees:

N 0
g NH,
S~ ~ s —(
N 0—\ N
/ /

O C HO
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General Graph Kernels

. Some kernels take advantage of the rich chemical graph
structure and perform as little decomposition as possible.

. Examples:

2012/9/23

Subgraph kernel - Mahe, Ralaivola, Stoven, and Vert. The
pharmacophore kernel for virtual screening with support
vector machines. Technical Report Technical Report
HAL:ccsd-00020066, Ecole des Mines de Paris, march
2006.

Optimal Assignment kernel — Frohlich et al. Kernel
Functions for Attriubted Molecular Graphs - A new
Similarity-Based Approach to ADME Prediction in
Classification. QSAR & Combinatorial Science 25(4),
2006
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Subgraph Kernels

« Decompose chemical graphs into the most
general substructure.

« Can mine patterns and compute similarity
based on shared patterns.

. Many aspects of chemical activity are
determined by functional groups or
pharmacophores that can be represented as
subgraphs and incorporated into a kernel.
(Mahée 2006)
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Subgraph Examples

P2
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Frequent Patterns in Chemical
Graphs
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Pharmacophore Kernel
(Mahé 2006)

. Many molecular properties are determined by
the existence of specific patterns that can
attach to chemical scaffolds in a modular
way.

ne 3-dimensional arrangement of these

T
pharmacophores Is also incorporated for
chemical activity prediction.
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Optimal Assignment Kernel
(Frohlich 2006)

 Instead of using a decomposition, two
chemical graphs are aligned by matching
vertices from one graph to the other.

. Computes a maximum weighted bipartite
graph between to sets of vertices, but is not
positive semi-definite as originally published.

« Uses a recursive matching function to align
groups of vertices.
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Bipartite Graph

Chemical
Graph A
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Bipartite Graph

CCCCCC

Chemical
Graph B



Matching Vertices and
Patterns

OH

2012/9/23
CHI SBD
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Prediction accuracy

Protein-Chemical Interaction
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Kernel Based Similarity Search

e Using the kernel functions to define similarity
e Scale up those kernel functions to chemical

structure ©

2012/9/23

atabase search
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k-NN Classification Results

100 . . . . .
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Wang et al., Application of Kernel Functions for Accurate Similarity Search in Large Chemical Databases,

BMC Bioinformatics Vol. 11 (Suppl 3):S8, 2010
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Chemical Enrichment Study

Obtained 110 inhibitors of focal

adhesion kinase 1 (FADK 1) g —
with AID810 from PubChem odf R

0.8f

Randomly picked 20 chemical
compounds. Augmented them to
the NCI/NIH AIDS data set to
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Scalability of the Algorithm
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Additional Chemical Features

e Not limited to structure — much more data
sometimes available

In fact common structure will not always reveal
common effect

Whole picture of biological systems needed in reality

e Different ways of characterizing a drug
(chemical) based on its effects and
Interactions

2012/9/23 CHI SBD 99



Additional Chemical Features

e Not limited to structure — much more data
sometimes available

In fact common structure will not always reveal
common effect

Whole picture of biological systems needed in reality

e Different ways of characterizing a drug
(chemical) based on its effects and
Interactions
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Part IV: Advanced Topics of Data
Analysis in Drug Discovery

e Use Quantitative Structure Activity Relationship
models

e Use machine learning, data mining, information
retrieval, text mining, image analysis to understand
iInformation in a wide range of data types

e Modeling a variety of end-points
Protein-chemical interaction
Gene-chemical interaction
Chemical toxicity

Absorption, distribution, metabolism, and excretion (ADME)
properties
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Additional Chemical Features

e Different ways of characterizing a drug:

Interaction Profiles

Chemical-protein interactions, chemical-genetic
Interactions

Drug Effects (Phenotypical — text mining)
Side effect profile
Pharmacological effects

In Vitro/ In Vivo test effects
Genetic profiles, screening profiles
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Interaction Profiles

e Characterize an object based on its interactions
(interactome) with another set

Similar idea to kernel methods
Proteins 011 Interest

Compounds
tested against | Cl 1 0 0 1
proteins c2 0 1 1 1

Interaction networks (graph), binary vector or real-valued
activity/interaction strength
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Chem.-Protein Interaction
Profile Example

e Chemical effects are usually result of multi-
protein interactions (Hopkins 2008)
Proteome similarity good indicator of common effects

e (Yang 2009) exploited protein interactome of
chemicals using data mining techniques for
exploring Severe Adverse Drug Reaction
(SADR)

Determine common protein sub-groups
Classify SADR using profile

A. L. Hopkins, “Network pharmacology: the next paradigm in drug discovery.” Nature Chemical Biology

4, 682 — 690, 2008. _ _
2oleiovang, J. Chen, and L. He, “Harvesting Candidasedsenes Responsible for Serious Adverse Drug 104

Reactions from a Chemical-Protein Interactome.” PLoS Comput Biol 5(7), 2009.



Chem.-Genetic Interaction
Example

e Chems. with different structure can still share
common effects! (structure isn’t always enough)

e (Parsons 2004, Parsons 2006) used chemical-
genetic profiles (a.k.a. hyper-sensitivity profiles)
To Infer protein or pathway targets and

To identify pathways protecting against toxic effects of
a drug

Potentially providing info. about compound’s mode of
action

Parsons et al., "Integration of chemical-genetic and genetic interaction data links bioactive compounds
to cellular target pathways." Nat. Biotechnol. 22:62—69, 2004.

2088%ons et al., “Exploring the mode-of-action dftBifdttive compounds by chemical-genetic profiling'fi
yeast.” Cell 126:611-625, 2006.



Chem.-Genetic Interaction
Example

e Compounds with very different structures can
have similar modes of action, captured by
chemical-genetic profile

E.g. two highly selective inhibitors of Hsp90, highly
unrelated structurally, similar chemical-genetic profiles
(Parsons 2006)

e Looked at inhibitors with yeast and gene
knockout

Parsons et al., "Integration of chemical-genetic and genetic interaction data links bioactive compounds
to cellular target pathways." Nat. Biotechnol. 22:62—69, 2004.

2088ons et al., “Exploring the mode-of-action dftBifdttive compounds by chemical-genetic profiling'#§
yeast.” Cell 126:611-625, 2006.



Chem.-Genetic Interaction
Example

e Chemical-genetic profile:

Interaction Is characterized by combination of
chemical with gene knockout leading to cell death

(or defects)
Emerging high-throughput method

~5,000 yeast deletion mutants and up to 82
compounds tested

e 2-D hierarchical clustering and probabilistic sparse
matrix factorization for visualization and to identify
compounds with similar modes of action

Parsons et al., "Integration of chemical-genetic and genetic interaction data links bioactive compounds
to ceIIuIar target pathways." Nat. Biotechnol. 22 62 69 2004.

Parsons et al., “Exploring the mode-of-action of bloactlve compounds by chemical-genetic proflllng |n
yeast.” Cell 126:611-625, 2006.



Side Effects as Features

e Adverse Drug Reactions (side effects) used to predict
drug-target interactions

(Campillos 2008) demonstrated how side-effects could reveal
unknown interactions

Drugs with similar (phenotypic) side-effect profiles used to predict
common targets

Reveal existing FDA-approved drugs for one disease could be
used for a different one

E.g.: Rabeprazole (protein-pump inhibitor) used to treat
stomach ulcers and pergolide (dopamine receptor agonist)
have common side-effect profile — rabeprazole shown to bind
to dopamine receptos (Campillos 2008)

2012/9/23 CHI SBD 108
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Side Effects as Features

e (Kuhn 2008) provides side-effect database
free for academic use - SIDER:
http://sideeffects.embl.de/
1,450 side effects, 888 drugs

Drug side-effects were collected using text mining
approach from package inserts of drugs —e-format

From public sources such as FDA

Coding Symbols for a Thesaurus of Adverse
Reaction Terms (COSTART) - side effect lexicon

2012/9/23 CHI SBD 109
Kuhn et al., “A side effect resource to capture phenotypic effects of drugs." Molecular Systems Biology,

6:343, 20009.



Pharmocological Effects

e (Yamanishi 2010) used chemical structure,
protein sequence, and general phenotypic
effects of the chemicals to predict chemical-
protein interaction network

e Pharmocological effects:

keywords for drugs were obtained from the JAPIC
(Japan Pharmaceutical Information Center)
database - 18,653 keywords in total

Grouped: pharmaceutical effects, adverse effects,
caution, usage, properties, etc. (general text info.)

2012/9/23 CHI SBD 110
Yamanishi et al., “Drug-target interaction prediction from chemical, genomic and pharmacological data

in an integrated framework" ISMB, 2010.



Pharmocological Effects

“Pharmaceutical effects” key words used as
binary features

» TWo step process:

Use known pharmacological effects to predict
unknown ones in chemicals (regression model)

Use known and predicted pharmacological
features to predict drug target interaction
network

Embed drugs in targets into a unified space, and use
distance threshold to determine interaction

2012/9/23 CHI SBD 111
Yamanishi et al., “Drug-target interaction prediction from chemical, genomic and pharmacological data

in an integrated framework" ISMB, 2010.



Targets

Pharmacological effect similarity

Pharmacological affect similarity
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In Vitro Screening

e |n vitro (test tube) experiments can be
designed to measure indicators of a drug’s
effects — features

E.g. measure gene expression, transcriptional
responses, protein function, etc. of samples/cells
of interest combined with drugs

E.qg. (lorio 2010), (Judson 2010)

High-throughput screening approach (HTS)
quicker, less expensive then obtaining end-points

lorio et al., "Discovery of drug mode of action and drug repositioning from transcriptional responses."
PNAS 107(33), 2010.

205{¥&on et al., In Vitro Screening of EnvironmehRtdP8hemicals for Targeted Testing Prioritization: The3
ToxCast Project.” Environ Health Perspect 118(4) 2010.



In Vitro Screening

e U.S. Environmental Protection Agency’s
(EPA) ToxCast Program (Judson 2010)

Phase | profiled >300 chiefly pesticide chemicals

Over 400 HTS endpoints collected - biochemical
assays of:
protein function

cell-based transcriptional reporter and gene
expression

cell line and primary cell functional

developmental endpoints in zebrafish embryos and

embryonic stem cells

29t##&5n et al., In Vitro Screening of Environmental 8femicals for Targeted Testing Prioritization: Thet14
ToxCast Project.” Environ Health Perspect 118(4) 2010.




In Vitro Screening

e U.S. Environmental Protection Agency’s
(EPA) ToxCast Program (Judson 2010)

~$2 billion in animal toxicity studies
Battery of toxicology methods to obtain reliable toxicity
end-points:

« Developmental toxicity, multi-generation reproductive
studies, sub-chronic and chronic rodent bioassays, etc.

Phase Il will expand chemicals tested — more and
wider variety

29t##&5n et al., In Vitro Screening of Environmental 8femicals for Targeted Testing Prioritization: The!1®
ToxCast Project.” Environ Health Perspect 118(4) 2010.



Nature of Non-Structure
Features

e Typically all expensive to obtain

Unlike structure-based chemical descriptors that are
fast, inexpensive, and easy to obtain

Missing values — not all information is available for
all drugs, all features, etc.
e.g. missing protein interactions, only tested for some

compounds, some proteins, different proteins for
different compounds

In vitro and in vivo tests expensive, not likely to get for
all data e.g. EPA data — time and cost

Missing pharmacological effects
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Nature of Non-Structure
Features

e Typically all expensive to obtain

Transfer learning:

As a result, must make use of what labeled data
available

Expensive and time-consuming to obtain end-points and
additional features for specific set of chemicals or e.qg.
targets
However chemical space is huge, we must consider
effects of selection bias when using existing available
data to reduce time and cost

Different targets, sets of chemicals, different marginal or
conditional distributions — transfer learning
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Nature of Non-Structure
Features

e Another potential solution: adaptive data
mining techniques
E.g. active learning

Adaptively determine what information is most
necessary (which compounds to test, etc.) to

achieve some goal, e.g. elucidate chemical
activity model
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Adaptive Approaches to Drug
Discovery

e Computational methods could make drug
development process more adaptive

Adaptive techniques could improve efficiency and
success (reduce costs) of drug discovery process

« Model P(drug high success | drug descriptor, drug
combinations/conditions, sample indicators, etc.)

« To better understand P(Y|X), choose most informative test
Active learning
Bayesian Clinical Trials
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Adaptive Approaches to Drug
Discovery

e Active learning with computational models of
activity can aid in hit/lead identification
e Drug Discovery Process:
|dentify Target
Test an initial set-of chemicals against target (HTS)
ased on results refine activity model (chemist.or
machine)
Suggest next set of chemicals to test b

Repeat:.—
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Adaptive Approaches to Drug
Discovery

e Active learning:
Repeated tests — but tests cost
Ability to choose which instances to obtain label

Exploit choice to identify most hits or reveal most
Info. about activity model as quickly as possible

e E.g. Warmuth et al. 2003, SVM approach
to identify candidate drugs to screen
Farthest from hyperplane — most certain
Closest to hyperplane — most uncertain

Warmuth et al. “Active Learning with Support Vector Machines in the Drug Discovery Process,” Journal of Chemical
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Adaptive Approaches to Drug
Discovery

e Maintaining and updating model of drug
success — also apply to other phases

e Highlight: “Bayesian Clinical Trials” (Berry
20006)

Adaptive, computational approaches successfully
used to help regulate clinical trials

Case study of FDA approved drug

D. Berry, “Bayesian Clinical Trials.” Nature Reviews Drug Discovery, 2006
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Conclusions

e Drug discovery is a very very
expensive process

e Enormous opportunities for data
analytics.

o Data are increasingly becoming
publically available

o No one knows the best practice to
discovery a drug (even big pharms
In the business >100 years)

e Challenges:
e Do not underestimate the beast!
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Questions?

e Dr. Jun (Luke) Huan
Assoclate Professor

Department of Electrical Engineering and Computer
Science |

University of Kansas

e | thank CHI and KU Special Chemistry Center for
sponsoring my talk
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