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General introduction 
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Introduction (1/2) 

• Our everyday actions, as expressed by the way we live and 
move, leave digital traces in information systems.  
– Move in workplace, perform a surgery, etc. 

• This is due to the use of mobile location aware devices. 
– That allow us to communicate.  
– That allow them to locate us ! Thanks to positioning 

technologies. 

• Through these traces we can sense the objects movements 
in a space. 
– City, delegation, hospitals, human body, etc. 

• Their potential value is high because of the increasing 
volume, pervasiveness and positioning accuracy of these 
traces. 
– Varied queries can be performed.   
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Introduction (2/2) 

• Location technologies are capable of: 
– Providing a better estimation of a mobile object‘s 

position. 

• Positioning system-equipped mobile devices can:  
– Transmit location information to some services 

provider.  

• Latest advances like : 
– Wi-Fi and Bluetooth devices are becoming a source of 

data for indoor positioning. 
– Wi-Max can become an alternative for outdoor 

positioning. 
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Some kinds of mobility data scenarios 
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Scenarios in health care (1/4) 
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Scenarios in health care (2/4) 
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Scenarios in health care (3/4) 
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Scenarios in health care (4/4) 

9 



Pervasive systems 
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Pervasive computing 

• Ubiquitous 
– Accessible from anywhere. 

• Mobile 
– Integrate mobile devices. 

• Context-aware 
– Take into account the execution context. 

• Pervasive 
– Associate ubiquity, mobility and context-awareness. 

• Ambient 
– Integrated into daily objects. 
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Ambient systems 
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Pervasive system 

Distributed 
system 

Mobility  
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Context 
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13 



14 

Four waves - Four paradigms 

• Mainframe computing (60’s-70’s) 
– Massive computers to execute big data processing applications. 
– Very few computers in the world. 

• Desktop computing (80’s-90’s) 
– One computer at every desk to help in business-related activities. 
– Computers connected in intranets to a massive global network 

(internet), all wired. 

• Mobile computing (90’s-00’s) 
– A few devices for every person, small enough to carry around. 
– Devices connected to cellular networks or WLANs. 

• Ubiquitous computing (now) 
– Tens/hundreds of computing devices in every room/person, becoming 

“invisible” and part of the environment. 
– WANs, LANs, PANs – networking in small spaces. 
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Trend: Weiser’s 3 waves of computing  
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Ubiquitous computing 

• Ubiquitous computing: 
– Activates the world. 

– Is invisible, everywhere computing that does not 
live on a personal device of any sort, but 
everywhere. 

– Makes a computer so embedded, so fitting, so 
natural, that we use it without even thinking 
about it. 

• Also called: pervasive, deeply embedded, 
sentient computing, and ambient intelligence. 
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Five main properties for ubiquitous computing 

Intelligent

Context-aware 

Autonomous

Distributed

iHCI



Ubiquitous health care 

• Environment that collects the information by 
attaching sensors to medical “objects” and 
managing real-time information through the 
network. 

• Providing health service of precaution, 
diagnosis, treatment, post management, etc. 

• Everywhere at anytime. 

18 



 

 
Blood Sugar 

Blood Pressure 

Temperature Acceleration 

ECG 

Ubiquitous health care example 

Health Information 

System 



Digital bandage 
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Low power and small Size 

 

Toumaz company in England Digital Plaster 

IMEC in Belgium Wireless Sensor Platform  
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MIT Wireless Ring Sensor 
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Measurments (wireless) 

 - Heart rate 
 - Heart rate variability 
 - Oxygen saturation 
 - Estimation of blood pressure 
 



Enabling technologies 

• Wireless (data) 
communication 
– Higher bandwidth 
– Lower power 
– Commodity (readily 

available and secure) 

• Small form factor devices 
– Shrinking electronics 
– Better displays 
– New input methods 

• Personalization 
– Machine learning 
– Inference 
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Extremely varied 

• Embedding for smart control 
– Embedded systems for cars, airplanes, patients, 

etc. 

• Creating new computing devices 

• Connecting the existing physical world to a 
computational infrastructure 
– Ordinary objects and tasks re-evaluated and 

extended with computational/communication 
capabilities 
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Mobile computing 

• The application of small, portable, and 
wireless computing and communication 
devices. 

• Being able to use a computing device even 
when being on the move. 

• Portability is one aspect of mobile computing 

– portable vs. mobile. 



Distributed IS duties 

• Data persistency. 
• Data exchange between heterogonous applications.  
• Data distribution on distant sites. 
• Data permanent consistency management. 
• Platforms interoperability. 
• Applications portability. 
• Concurrent access management. 
• Legacy systems integration. 
• Openness. 
• Security. 
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Pervasive IS duties 

• Distributed IS duties. 

• Scalability. 

• Invisibility. 

• Context-awareness. 

• Intelligence (« smartness »). 

• Pro-action « all the time everywhere ». 
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Scalability 

• Scaling. 
• Manage increasing volumes of 

– Users. 
– Applications. 
– Connected devices. 

• Develop applications whose their “heart” is  
independent from the volume, the users, and the 
devices. 

• Use adaptation techniques to be able to give 
answers for each case. 
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Invisibility 

• Requires minimal human intervention. 

• Self adaptation to changes. 

• Self-learning. 

• Example: 
– Dynamic reconfiguration of network 

characteristics of a device. 

– Space resources access according to geographic 
zone encapsulating that space. 

– Out of space= limits definition of space. 
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Context-awareness 

• Perception of the environment to interact 
more 'naturally' with the user. 

• Sensors of the physical environment. 

• Self-descriptive devices. 

• Persons description. 

• Applications meta-data. 
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« Smartness » 

• Smart = intelligent, quick-witted, malignant, 
resourceful. 

• Perceive the execution context is not 
sufficient. 

• Must effectively use context information. 

• Example : smart home. 
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Pro-action 

• Suggest, propose corrective actions to the user 
depending on the context present or predicted. 

– For example, move 100 meters to a more efficient 
network and thus accomplish a task in a correct time. 

• Implies to know: 

– Predict an event, a situation, etc. 

– Assess a current or a possible situation. 

– Compare two situations and judge the best. 

– That "it's worth" to break invisibility. 
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Pervasive computing 



Facial paralysis use case 
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Motivation scenario: Medical case 

• Let us consider a health care organization which is interested: 
– In analyzing mobility data in different areas such as in facial nerve. 

– To decide upon bell’s patients recovery and about the disease 
behavior. 

• It is interested in analyzing: 
– The recovery process of a patient in time intervals. 

– The demographical profiles of patients coming from different 
geographical zones, belonging to different  age intervals, having 
different family antecedents, etc. 

• This knowledge will enable physicians: 
– To understand the disease behavior. 

– To apply more effective strategies according to patients recovery.      
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Facial nerve components modeling 
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Modeling the facial nerve stream as a moving 
object circulating into the facial nerve “network”.  

 

 



Anatomy of facial nerve 
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Facial nerve graph 
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Muscles graph Glands Graph 



Mobility data analysis 
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Analyzing mobility data (1/3) 

• Modern communication and computing devices are pervasive 
and carried by various objects: people, vehicles, etc.  

• The consequence is that object and its activity in a space may 
be sensed: 
– Not necessarily on purpose. 

• We just collect data. 

– As a side effect of the services provided to mobile users.  
• Calls made and/or received, SMS, emails, shopping, diagnosis, etc. 

• Wireless mobile devices network is an infrastructure able: 
– To gather mobility data.. 

– To analyze them and gain insights about objects movements.  
• Trajectories (stop, moves, activities, etc.). 
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Analyzing mobility data (2/3) 

• Usage of location aware devices allows access to 
large spatiotemporal datasets. 

• The space-time nature of this kind of data: 
– Results in the generation of huge amounts of 

spatiotemporal data. 

– Imposes new challenges regarding the analytical tools 
to be used for transforming raw data to knowledge.  

• Necessity to investigate the extension of 
traditional analytical techniques to be applicable 
on mobility data.  
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Analyzing mobility data (3/3) 

• The analysis of mobility data raises opportunities for discovering 
behavioral patterns to be exploited in applications like: 
– Mobile marketing. 
– Mobile information collections. 
– Mobile hospitals. 
– Mobile physicians. 
– Stream nerve detection. 
– Heart disease supervision. 
– Robots. 
– Traffic management, etc.  

 
• OLAP and DM techniques can be employed in order to convert this 

vast amount of raw data into useful knowledge.  
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Expectations from mobility data analysis (1/3) 

• To propose innovative analytical techniques aiming to 
extract useful patterns from spatiotemporal data. 
– Extraction, Transformation, and Loading. 

– Mobile devices, MOD, TDW. 

• To identify the difference between two types of 
spatiotemporal data:  mobility and immobility data.  
– Stream nerve vs muscles. 

• To focus on data warehousing and mining techniques 
that can be applied on MODs.  
– Patients, physicians, devices, medical staffs, hospitals, 

cities, etc. 
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Expectations from mobility data analysis (2/3) 

• How traditional data cube model is adapted to 
TDWs in order to transform raw location data 
into valuable information. 

• How ETL procedure feeds a TDW with 
aggregated trajectory data. 

• How to aggregate cube measures for OLAP 
purposes.  
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Expectations from mobility data analysis (3/3) 

• To study a new approach in designing trajectory 
data cubes. 

• To give answers to ad hoc OLAP queries related to 
various applications. 

• To propose a new OLAP data model that include a 
flexible fact table that: 
– Can answer queries considering semantic definitions 

of trajectories. 

– Provides the option to choose the appropriate 
semantic for aggregation queries over trajectory data. 
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Moving object data management, 
warehousing and mining  
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Health care decisional process 
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Measured 
Data 

Sensing Monitoring Feedback Analyzing 
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Long-term 
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biological signals 

 Filtered & 
Analyzed  Data 
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 Long-term Data storage 

 Trend analysis 

 Behavior modification 
 Emergency Alert 
 Feedback-Action 
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Medical Devices 
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Facial nerve TDW 
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Concepts on spatiotemporal 
data 
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Basic concepts on spatiotemporal data (1/3) 

• Generation of dissimilar, dynamic, and 
geographically distributed spatiotemporal 
data has exploded, thanks to advances in: 

– Mobile devices and remote sensors. 

– Networks. 

– Location sensing devices.  

• 2 types of spatiotemporal data: mobile and 
static. 
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Basic concepts on spatiotemporal data (2/3) 

• The rate at which geospatial data are 
generated exceeds the ability to organize and 
analyze them to extract patterns in a timely 
manner.  

• CS and Geo-informatics collaborate to provide 
innovative and effective solutions.   
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Basic concepts on spatiotemporal data (3/3) 

 
• A typical category of mobility data is the time-stamped 

location data: 
– Collected by location-aware devices. 
– Allowing access to large datasets consisting of time-stamped 

geographical locations.   

• The traditional database technology has been extended 
into MODs that handle: 
– Modeling. 
– Indexing. 
– Query processing issues for trajectories. 

• The challenge after storing the data is: 
– The implementation of analytics to extract useful knowledge.  
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Immobile entities (1/2) 

• Sensing technologies feel, record and study phenomena. 
– Human body, diseases, etc.  

• At least data collection occurs every one small time unit 
depending on applications. 

• Patients data collection is huge and rapidly increasing.  

• Medical staffs record information to describe and study 
patients bodies activities. 

• Analysts find a valuable “data treasure”, to process and 
analyze to discover knowledge from this data.  
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Immobile entities  (2/2) 

• Human body phenomena are instantly recorded 
by a number of organizations worldwide.  

• A system collecting and analyzing most accurate 
data among different sources is needed.  

• Some sources provide data about the same 
phenomena though with differences in their 
details. 

• The need for a generic architecture will be able to 
integrate the remote sources in a proper way by 
refining and homogenizing raw data.   
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Data warehousing and mining 
components 
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Data warehousing and mining 
components 

• Tools for data exploration and inspection. 

• Algorithms for generating historic profiles of activities 
related to specific spaces and time periods. 

• Techniques providing the association of data with other 
geophysical parameters of interest: 
– Patient morphology, disease and recovery evolution, etc. 

– Visualization components using geographic and other 
thematic-oriented maps for: 
• Presentation of data to users such as medical staffs. 

• Supporting sophisticated user interaction.  
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Trajectory data warehousing and 
mining users profiles 

• Physicians are interested in:  

– Constructing and visualizing patients' profiles of 
certain body regions during specific time periods 
of a disease evolution. 

– Discovering regions of similar behavior.  

– Disease activity, thus querying the system for 
properties of general interest. 
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Facial paralysis warehousing and 
mining 

• DWMS architecture provides users a wealth of 
information about patients recovery from Bell’s 
palsy recovery. 

• Collected data can be stored in a local database 
and/or a data warehouse (for simple querying 
and analysis for decision making, respectively).  

• Data within the database is dynamic and detailed; 
while that within the data warehouse is static and 
summarized. 
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DWMS querying functionality  

• Retrieval of spatial information given a temporal instance.  

– When we are dealing with records including: 
• Position (segments). 

• Time of facial nerve partial or total recovery together with 
attributes like intensity, segments, paths, muscles, etc.  

• Retrieval of spatial information given a temporal interval.  

– Evolution of spatial objects (stream nerve) over time. 

– Recording the duration of partial and total recoveries and 
how certain parameters of the phenomenon vary 
throughout the time interval of its duration. 
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Examples of typical queries 

• Find the number of recoveries realized during 
the past four months, which reside more 
closely to a given location.  

• Find all sequelae of patients residing in a 
certain region.  

• Find the number of recoveries occurred in a 
specified time interval. 
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Maintaining summary for data 
analysis (1/3) 

• Two popular techniques for analyzing data and interpreting their 
meaning are: 
– OLAP analysis. 
– Data mining.  

• Summarized health care data can study the phenomenon from a 
higher level and search for hidden, previously unknown knowledge.  

• View part of the historical recovery profile: 
– Example. the number of cases that leads to a surgery in the past 

twenty years, over a specified region. 

• View the same information over a country, continent, the world. 
– More detailed view, formally a drill-down operation. 
– Worldwide. More summarized view, formally a roll-up operation.  
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Maintaining summary for data 
analysis (2/3) 

• Slice and  dice, for selecting parts of a data 
cube by imposing  conditions on a single or 
multiple cube dimensions. 

• Pivot, which provides the user with alternative 
presentations of the cube.   

• Integrating data analysis and mining 
techniques into an DWMS aims to the 
discovery of interesting, implicit and 
previously unknown knowledge.  
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Examples of useful patterns found through 

Knowledge Discovery & Delivery (KDD) process 
 

• Clustering of information. 
– Cases occurred closely in space and/or time. 

– Cases related to kids, adults, etc. 

• Classification of phenomena with respect to recovered 
areas, and detecting phenomena semantics by using 
pattern finding techniques, etc. 
– Characterizing the main recovery aspects in recovery 

sequences. 

– Measuring the similarity of sequelae sequences, according 
to a similarity measure specified by the domain expert, 
etc.   
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Mobile entities 
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The case of trajectory data   

• Moving objects are geometries (i.e. points, lines, 
areas) changing over time. 
– Pills, stunts, stream nerve, etc. 

• Trajectory data describes the movement of these 
objects.  

• Movement implies two dimensions: the spatial 
and the temporal (recovery).   

• Movement can be described as continuous 
change of position in the geographical space and 
through comparison between two different 
temporal instants.   
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 Spatio-temporal trajectory 
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• A sequence of spatiotemporal points 

• In a road network. 

• In a human body network. 

• In a part a body network: The face for 
example. 



 A semantic trajectory example 

• Semantic enrichment 
integrate structured 
trajectories with 
semantic knowledge 
from the two semantic 
viewpoints, i.e.: 

– Geographic view. 

– Application domain view.  
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A hybrid semantic trajectory model 
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Structured trajectory (a sequence of 
episodes) 
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 Semantic trajectory (a sequence of 
semantic episodes) 
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Offline trajectory computing 
framework 
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Formalization 
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Formalization (1/3) 

• A trajectory T is a continuous mapping from 
the temporal I ⊆ R to the spatial domain (R2, 
the 2D plane).    

•  I  R  R2: t  a(t)= (ax(t), ay(t)). 

• T= {(ax(t), ay(t), t) | t  I}  R2xR. 

• Where (ax(t), ay(t), t) are the sample points 
contained in the available dataset. 
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Formalization (2/3) 

• From an application point of view: 
– A trajectory is the recording of an object‘s motion. 

– Example. The recording of the positions of an 
object at specific timestamps. 

• The actual trajectory consists of a curve. 

• Real-world requirements imply that the 
trajectory has to be built upon a set of sample 
points. 
– The time-stamped positions of the object. 
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Formalization (3/3) 

• Trajectories of moving points are often 
defined as sequences of (x, y, t) triples. 

• T={(x1, y1, t1), (x2, y2, t2), …, (xn, yn, tn)}, where 
xi, yi, ti  R, and t1< t2 … <tn. 

• The main objective is to include appropriate 
techniques for the representation, querying, 
indexing and modeling of moving object‘s 
trajectories.  
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Innovation 
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The need for innovation in decision 
support techniques  (1/2) 

• Traditional decision support techniques developed as 
a set of applications and technologies for: 
– Gathering. 

– Storing. 

– Analyzing. 

– Providing access to data. 

• Example: 
– Data warehousing. 

– Online analytical processing. 

– Data mining. 

– Visualization.  
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The need for innovation in decision 
support techniques (2/2) 

• These techniques are embedded in decision support 
systems. 
– To support business and organizational decision-making 

activities.  

• Such systems help decision makers to identify, analyze and 
solve problems as well as make decisions, by combining: 
– Raw data. 
– Documents. 
– Personal knowledge. 
– Business models, etc. 

• Decision support techniques were developed to satisfy the 
changeable and complicated needs of current business and 
technological environment.  
 

77 



Decision support techniques 
extensions (1/2) 

• The extension of traditional techniques to deliver 
new analytics, suitable for mobility data.  

• To serve emerging applications (e.g. mobile health 
care) that need to convert raw location data into 
useful knowledge.   

• A TDW can help towards computing aggregations on 
trajectory data and thus studying them in a higher 
level of abstraction.  
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Decision support techniques 
extensions (2/2) 

• Data mining techniques are used to discover 
unknown, useful patterns. 

• The vast amount of available mobility data requires 
the extension of traditional mining techniques so as 
to be suitable for this new kind of data. 

• Discovering spatiotemporal associations, clusters, 
predicting actions, etc., lead to mobility patterns: 
– That could help to construct summary and useful abstractions of large 

volumes of raw location data and gain insights on movement 
behaviors.  

 
79 



Efficient trajectory data 
warehousing 
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Efficient trajectory data warehousing 
(1/2)   

• Data warehousing is a technology for integrating all 
sorts of transactional data, dispersed within 
organizations. 

• A DW is defined as a subject-oriented, integrated, 
time-variant, non-volatile collection of data in 
support of management of decision making process.  

• In a DW, data are organized and manipulated in 
accordance with the concepts and operators 
provided by a multidimensional data model, which 
views data in the form of a data cube.  
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Efficient trajectory data warehousing 
(2/2)  

• A data cube allows data to be modeled and 
viewed in multiple dimensions: 
– Each dimension represents some business perspective. 

– It is typically implemented by adopting a star, snowflake, 
or constellations schema model.  

• A DW consists of a fact table surrounded by a 
set of dimensional tables related with it, 
which contains keys and measures.  
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Dimensions and measures 

• Dimensions represent the analysis axes, while 
measures are the variables being analyzed over 
the different dimensions.  

• Each dimension is organized as a hierarchies of 
dimension levels; each level corresponding to a 
different granularity for the dimension.  

• The members of a certain dimension level 
(months) can be aggregated to constitute the 
members of the next higher level (years).  

• The measures are also aggregated following this 
hierarchy by means of an aggregation function.  
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OLAP Operations (1/2) 

• DWs are optimized for OLAP operations. 

• Typical OLAP operations include: 

– The aggregation or de-aggregation of information 
(called  roll-up  and  drill-down, respectively) along 
a dimension. 

– The selection of specific parts of a cube (slicing  
and  dicing). 

– The reorientation of the multidimensional view of 
the data on the screen (pivoting).   
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OLAP Operations (2/2) 

• Data warehousing and OLAP techniques can be employed in order 
to convert vast amount of raw data into useful knowledge.  

• Conventional techniques were not designed for analyzing trajectory 
data.  

• There is the need for extending data warehousing technology so as 
to handle mobility data.  

• Such a warehouse could analyze measures: he number of patients 
in specific spatial areas, the average intensities of facial nerve, the 
maximum and average speed of a stream nerve. 

• This analysis could be done through appropriate dimensions that 
will allow to explore aggregated data under different granularities. 
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Motivation issues (1/2) 

• Transform raw trajectories to valuable information 
used for decision making in ubiquitous applications. 

• What makes extracting valuable information from such 
spatiotemporal data a hard task: 
– The high volume of raw data produced by sensing and 

positioning technologies. 

– The complex nature of data stored in trajectory databases. 

– The specialized query processing demands.  

• Extend traditional aggregation techniques to produce 
summarized trajectory information and provide OLAP 
style analysis.  

86 



Motivation Issues (2/2) 

• Extending traditional (i.e., non-spatial), spatial or 
spatiotemporal models to incorporate semantics driven by 
the nature of trajectories introduce specific requirements: 
– Support high level OLAP analysis. 
– Facilitate knowledge discovery from TDWs. 

• The basic analysis constituents in a TDW (i.e. facts) are the 
trajectories themselves.  

• We categorize the identified requirements into modeling, 
analysis and management requirements.  
– The first considers logical and conceptual level challenges 

introduced by TDWs. 
– The second goes over OLAP analysis requirements. 
– The third focuses on more technical aspects. 
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Data cube modeling 
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Data cube modeling issues  

• Investigate the prerequisites and the 
constraints imposed: 

–When describing the design of a TDW from 
a user perspective (i.e. conceptual model). 

–When describing the final result as a system 
in a platform-independent tool (i.e. logical 
model).  
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Thematic, spatial, temporal measures  

• From a modeling point of view: 
– A trajectory is a spatial object whose location varies in time.  

• Trajectories have thematic properties: 
– Usually are space and time dependent.  

• Characteristics of trajectories are described to be analyzed:   
– Numeric characteristics, such as the average speed of the 

trajectory, its direction, its duration. 
– Spatial characteristics, such as the geometric shape of the 

trajectory. 
– Temporal characteristics, such as the timing of the movement. 
– Spatiotemporal characteristics; such as a representative 

trajectory or a cluster of trajectories.   
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The portions of trajectories that lie 
within a cell 
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Thematic, spatial, temporal measures 

• Depending on the application and user 
requirements, several numeric measures could be 
considered. 

• The number of trajectories found in the cell (or 
started/ended their path in the cell; or 
crossed/entered/left the cell, and so on). 

• The {average/min/max} distance covered by 
trajectories in the cell. 

• The {average/min/max} time required to cover 
this distance. 
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Thematic, spatial, temporal 
dimensions (1/4) 

• Regarding the supported dimensions, as 
starting point a TDW should support: 
– The classic spatial dimensions (e.g. coordinate, 

roadway, district, cell, city, province, country). 

– Temporal dimensions (e.g. second, minute, hour, 
day, month, year). 

– Hierarchies, describing the underlying 
spatiotemporal framework wherein trajectories 
are moving.  
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Thematic, spatial, temporal 
dimensions (2/4)  

• It is important to allow space-time related 
dimensions to interact with thematic dimensions 
describing other sorts of information regarding 
trajectories like: 
– Technographic (mobile device used). 

– Demographic data (age and gender of users).  

• This allow an analyst : 
– To query TDW about the number of objects crossed an area of 

interest: get quantitative information. 

– To identify the objects in question: get qualitative information.  
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Thematic, spatial, temporal 
dimensions (3/4)  

• A rich TDW schema should include the following 
dimensions:  
– Temporal (time). 
– Geographical (location). 
– Demographics (gender, age, occupation, marital status, home 

and work postal code, etc.). 
– Technographics (mobile device, sensors, subscriptions in special 

services, etc.).  

• Technographics and demographics dimensions: 
– Enhance the warehouse with semantic information.  
– Allow the grouping of trajectories according to demographical 

characteristics or based on the technological characteristics of 
their devices.   
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Thematic, spatial, temporal 
dimensions (4/4) 

• Trajectory is a set of sampled locations in 
time, for which: 

– The in-between positions are calculated through 
some kind of interpolation. 

– The lowest level information is that of spatial 
coordinates.  

• This implies a huge discretization of the spatial 
dimension:  cell positions could be used 
instead of point positions. 
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OLAP 
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OLAP Requirements  

• In traditional DWs, data analysis is performed 
interactively by applying a set of OLAP operators.  

• In spatial data warehousing, particular OLAP operators 
have been defined to tackle the specificities of the 
domain.  

• We expect algebra of OLAP operators to be defined for 
trajectory data analysis.  

• Such an algebra should include: 
– Traditional operators, such as roll-up, drill-down and 

selection properly tailored to trajectories. 
–  Additional operators which account of the  spatiotemporal  

data type. 
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Roll-up 

• Roll-up operation allows to navigate from a 
detailed to a more general level of 
abstraction: 

– Either by climbing up the concept hierarchy  (e.g. 
from the level of ‘city‘ to the level  of ‘country‘). 

– Or by some dimension  reduction (e.g. by ignoring 
the ‘time‘  dimension and performing aggregation 
only over the ‘location‘ dimension).   
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Drill-down 

• Drill-down operation is the reverse of roll-up. 

• It allows to navigate from less detailed to 
more detailed information by: 

– Either stepping down a concept hierarchy for a 
dimension (‘country‘ to  ‘city‘). 

– Or by introducing additional dimensions (e.g. by 
considering not only the ‘location‘ dimension but 
the  ‘time‘ dimension also). 
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Slice, Dice 

• Slice operation performs a selection over one 
dimension (‘city=Tunis‘), whereas dice operation 
involves selections over two or more dimensions 
(‘city=Swarthmore and year=2006‘).  

• The conditions can involve not only numeric values but 
also more complex criteria, like spatial and/or temporal 
query windows.  

• To support these operations, the selection criteria can 
be transformed into a query against the TDW and 
processed by adequate query processing methods.   

• OLAP operations should be also supported by a TDW 
since they provide meaningful information.  
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Other operations 

• Other operations dedicated to trajectories might 
be defined. Examples include:   

– Operators that dynamically modify the spatiotemporal 
granularity of measures representing trajectories. 

– Medoid etc. operators which apply advanced 
aggregation methods, such as clustering of 
trajectories to extract representatives from a set of 
trajectories. 

– Operators to propagate/ aggregate uncertainty and 
imprecision present in the data of the TDW.  
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Trajectory Data Warehousing  
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Trajectory Data Warehousing  
The framework 
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Key questions 

• How to store and query trajectory data?  
– Database technology is extended: Moving Object Databases. 

• How to reconstruct a trajectory from raw logs? 
– Position devices provide us information just about location 

points and not about trajectories. 

• How to analyze trajectory data 
– Data Warehousing technology is adapted to handle trajectory 

data. 

• Are there any spatiotemporal patterns in my data? 
– New data mining algorithms are needed so as to discover such 

patterns. 
– Mobile objects health care mining is a very interesting topic in 

this area. 
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Data mining (1/2) 

• Clustering, the discovery of groups of similar 
trajectories, together with a summary of each 
group.  

• Which are the main paths of recovery during 
time intervals. 

• Which are the main paths of non recovery 
during time intervals. 
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Data mining (2/2) 

• Frequent patterns, the discovery of frequently 
recovered sub paths. 

• Classification, the discovery of behavior rules, aimed at 
explaining the behavior of current patients.  

• Clustering moving object trajectories, for example, 
requires finding out both: 
– A proper spatial granularity level (points, segments, lines, 

etc.). 

– A significant temporal sub domain (e.g., recovery “rush 
time “ might be informative for defining a clustering 
structure over recovery data. 
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