Conquering Big Data with Apache Spark

Ion Stoica
November 1st, 2015
The Berkeley AMPLab

January 2011 – 2017
- 8 faculty
- > 50 students
- 3 software engineer team

Organized for collaboration

AMP

Algorithms

Machines

People

AMPCamp (since 2012)

3 day retreats (twice a year)

400+ campers (100s companies)
The Berkeley AMPLab

Governmental and industrial funding:

Goal: Next generation of open source data analytics stack for industry & academia:
Berkeley Data Analytics Stack (BDAS)
Generic Big Data Stack

- Processing Layer
- Resource Management Layer
- Storage Layer
Hadoop Stack

Hive
HadoopMR
Pig
Impala
Storm
Giraph

Yarn

HDFS
BDAS Stack

Spark Streaming
BlinkDB
Sample Clean
Spark SQL
Spark Core
SparkR
GraphX
MLBase
MLlib
Velox

Mesos
Succinct
Tachyon

Hadoop Yarn
HDFS, S3, Ceph, …

BDAS Stack
3rd party
Today's Talk

BDAS Stack

Spark Streaming
BlinkDB
Sample Clean
Spark SQL
SparkR
GraphX
MLBase
MLlib
Velox
Processing

Spark Core

Mesos
Succinct
Tachyon

Hadoop Yarn

HDFS, S3, Ceph, ...

3rd party
Overview

1. Introduction
2. RDDs
3. Generality of RDDs (e.g. streaming)
4. DataFrames
5. Project Tungsten
Overview

1. Introduction
2. RDDs
3. Generality of RDDs (e.g. streaming)
4. DataFrames
5. Project Tungsten
A Short History

Started at UC Berkeley in 2009

Open Source: 2010

Apache Project: 2013

Today: most popular big data project
What Is Spark?

Parallel execution engine for big data processing

Easy to use: 2-5x less code than Hadoop MR
- High level API’s in Python, Java, and Scala

Fast: up to 100x faster than Hadoop MR
- Can exploit in-memory when available
- Low overhead scheduling, optimized engine

General: support multiple computation models
Analogy

First cellular phones ➔ Specialized devices ➔ Unified device (smartphone)
Analogy

First cellular phones
Specialized devices
Unified device (smartphone)

Better Phone
Better Games
Better GPS
Analogy

Batch processing → Specialized systems → Unified system
Analogy

Real-time analytics Instant fraud detection
Better Apps

Batch processing Specialized systems Unified system
General

Unifies \textit{batch, interactive} comp.
General

Unifies \textit{batch, interactive, streaming} comp.
General

Unifies *batch, interactive, streaming* comp.

Easy to build sophisticated applications

- Support iterative, graph-parallel algorithms
- Powerful APIs in Scala, Python, Java, R
Easy to Write Code

WordCount in 3 lines of Spark

```java
public class WordCount {
    public static class TokenizerMapper {
        extends Mapper<Object, Text, IntWritable, IntWritable> {
            private final int offset = 1;
            public void map(Object key, Text value, Context context) {
                StringTokenizer itr = new StringTokenizer(value.toString());
                while (itr.hasMoreTokens()) {
                    String word = itr.nextToken();
                    context.write(new Text(word), new IntWritable(1));
                }
            }
        }
    }

    public static class TokenizerReducer {
        extends Reducer<Text, IntWritable, Text, IntWritable> {
            private IntWritable result = new IntWritable();
            public void reduce(Text key, Iterable<IntWritable> values, Context context) {
                int sum = 0;
                for (IntWritable val : values) {
                    sum += val.get();
                }
                context.write(key, result); // Output (word, count)
            }
        }
    }
}
```

WordCount in 50+ lines of Java MR

```java
val f = sc.textFile(inputPath)
val w = f.flatMap(l => l.split(" ")).map(word => (word, 1)).cache()
w.reduceByKey(_ + _).saveAsText(outputPath)
```
Fast: Time to sort 100TB

2013 Record: Hadoop
- 2100 machines
- 72 minutes

2014 Record: Spark
- 207 machines
- 23 minutes

Also sorted 1PB in 4 hours

Source: Daytona GraySort benchmark, sortbenchmark.org
Community Growth

<table>
<thead>
<tr>
<th>June 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>total contributors</td>
</tr>
<tr>
<td>contributors/month</td>
</tr>
<tr>
<td>lines of code</td>
</tr>
</tbody>
</table>
Meetup Groups: January 2015

source: meetup.com
Meetup Groups: October 2015

source: meetup.com
Community Growth

Summit Attendees
- 2014: 1100
- 2015: 3900

Meetup Members
- 2014: 12K
- 2015: 42K

Developers Contributing
- 2014: 350
- 2015: 600
Large-Scale Usage

Largest cluster: 8000 nodes

Largest single job: 1 petabyte

Top streaming intake: 1 TB/hour

2014 on-disk sort record
Spark Ecosystem

Distributions
- databricks
- Hortonworks
- MapR
- Cloudera
- IBM
- Pivotal
- Oracle
- DataStax
- SAP
- Guavus
- Bluedata
- Stratio
- Huawei
- SequoiaDB
- Mesosphere
- Typesafe

Applications
- Tableau
- MicroStrategy
- Qlik
- Elasticsearch
- Pentaho
- Talend
- Tresata
- Trifacta
- Skytree
- Alpine
- Atscale
- Looker
- Technicolor
- Vindicia
- FAIM Data
- Adataq
- DiYotta
- Zoomdata
- Platfora
- Aware
- Zaloni
- Typesafe
- H2O
- Ideata
- Lynx Analytics
Overview

1. Introduction
2. RDDs
3. Generality of RDDs (e.g. streaming)
4. DataFrames
5. Project Tungsten
RDD: Resilient Distributed Datasets

Collections of objects distr. across a cluster
 • Stored in RAM or on Disk
 • Automatically rebuilt on failure

Operations
 • Transformations
 • Actions

Execution model: similar to SIMD
Operations on RDDs

Transformations $f(RDD) \Rightarrow RDD$
- Lazy (not computed immediately)
- E.g., “map”, “filter”, “groupBy”

Actions:
- Triggers computation
- E.g. “count”, “collect”, “saveAsTextFile”
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns.
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns.
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```python
lines = spark.textFile("hdfs://...")
```
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```python
lines = spark.textFile("hdfs://...")
```
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```python
lines = spark.textFile("hdfs://...")
errors = lines.filter(lambda s: s.startswith("ERROR"))
```
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns.

```python
lines = spark.textFile("hdfs://...")
errors = lines.filter(lambda s: s.startswith("ERROR"))
```
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```python
lines = spark.textFile("hdfs://...")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()

messages.filter(lambda s: "mysql" in s).count()
```
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```python
lines = spark.textFile("hdfs://...")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t") [2])
messages.cache()

messages.filter(lambda s: "mysql" in s).count()
```
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```python
lines = spark.textFile("hdfs://...")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()

messages.filter(lambda s: "mysql" in s).count()
```
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```python
lines = spark.textFile("hdfs://...")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()

messages.filter(lambda s: "mysql" in s).count()
```
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```python
lines = spark.textFile("hdfs://...")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t") [2])
messages.cache()

messages.filter(lambda s: "mysql" in s).count()
```
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```python
lines = spark.textFile("hdfs://...")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t") [2])
messages.cache()

messages.filter(lambda s: "mysql" in s).count()
```
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```python
lines = spark.textFile("hdfs://...")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t") [2])
messages.cache()

messages.filter(lambda s: "mysql" in s).count()
```
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```python
lines = spark.textFile("hdfs://...")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t") [2])
messages.cache()

messages.filter(lambda s: "mysql" in s).count()
messages.filter(lambda s: "php" in s).count()
```
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```python
lines = spark.textFile("hdfs://...")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()

messages.filter(lambda s: "mysql" in s).count()
messages.filter(lambda s: "php" in s).count()
```
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```python
lines = spark.textFile("hdfs://...")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()

messages.filter(lambda s: "mysql" in s).count()
messages.filter(lambda s: "php" in s).count()
```
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```python
lines = spark.textFile("hdfs://...")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()

messages.filter(lambda s: "mysql" in s).count()
messages.filter(lambda s: "php" in s).count()
```
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```python
lines = spark.textFile("hdfs://...")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()

messages.filter(lambda s: "mysql" in s).count()
messages.filter(lambda s: "php" in s).count()
```

Cache your data ➔ Faster Results

Full-text search of Wikipedia

- 60GB on 20 EC2 machines
- 0.5 sec from mem vs. 20s for on-disk
Language Support

Python

```python
lines = sc.textFile(...)  
lines.filter(lambda s: "ERROR" in s).count()
```

Scala

```scala
val lines = sc.textFile(...)  
lines.filter(x => x.contains("ERROR")).count()
```

Java

```java
JavaRDD<String> lines = sc.textFile(...);  
lines.filter(new Function<String, Boolean>() {  
    Boolean call(String s) {  
        return s.contains("error");  
    }  
}).count();
```

Standalone Programs
Python, Scala, & Java

Interactive Shells
Python & Scala

Performance
Java & Scala are faster due to static typing
…but Python is often fine
Expressive API

map
reduce
Expressive API

map reduce sample
filter count take
groupBy fold first
sort reduceByKey partitionBy
cross groupByKey mapWith
cogroup zip
partitionBy save
leftOuterJoin ...
Fault Recovery: Design Alternatives

Replication:
- Slow: need to write data over network
- Memory inefficient

Backup on persistent storage
- Persistent storage still (much) slower than memory
- Still need to go over network to protect against machine failures

Spark choice:
- Lineage: track sequence of operations to efficiently reconstruct lost RRD partitions
Fault Recovery Example

Two-partition RDD $A=\{A_1, A_2\}$ stored on disk

1) filter and cache \rightarrow RDD B
2) join \rightarrow RDD C
3) aggregate \rightarrow RDD D
Fault Recovery Example

C\textsubscript{1} lost due to node failure before reduce finishes
Fault Recovery Example

C_1 lost due to node failure before reduce finishes
Reconstruct C_1, eventually, on different node
Fault Recovery Results

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Iteration time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>119</td>
</tr>
<tr>
<td>2</td>
<td>57</td>
</tr>
<tr>
<td>3</td>
<td>56</td>
</tr>
<tr>
<td>4</td>
<td>58</td>
</tr>
<tr>
<td>5</td>
<td>58</td>
</tr>
<tr>
<td>6</td>
<td>81</td>
</tr>
<tr>
<td>7</td>
<td>57</td>
</tr>
<tr>
<td>8</td>
<td>59</td>
</tr>
<tr>
<td>9</td>
<td>57</td>
</tr>
<tr>
<td>10</td>
<td>59</td>
</tr>
</tbody>
</table>

Failure happens at iteration 6.
Overview

1. Introduction
2. RDDs
3. Generality of RDDs (e.g. streaming)
4. DataFrames
5. Project Tungsten
Spark Streaming: Motivation

Process large data streams at second-scale latencies
 • Site statistics, intrusion detection, online ML

To build and scale these apps users want:
 • Integration: with offline analytical stack
 • Fault-tolerance: both for crashes and stragglers
Traditional Streaming Systems

Event-driven record-at-a-times

- Each node has mutable state
- For each record, update state & send new records

State is lost if node dies

Making stateful stream processing be fault-tolerant is challenging
Spark Streaming

Data streams are chopped into batches
- A batch is an RDD holding a few 100s ms worth of data
Each batch is processed in Spark
How does it work?

Data streams are chopped into batches
- A batch is an RDD holding a few 100s ms worth of data
Each batch is processed in Spark
Results pushed out in batches
Streaming Word Count

```scala
val lines = context.socketTextStream("localhost", 9999)
val words = lines.flatMap(_.split(" "))
val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _)
wordCounts.print()
ssc.start()
```

- create DStream from data over socket
- split lines into words
- count the words
- print some counts on screen
- start processing the stream
object NetworkWordCount {
 def main(args: Array[String]) {
 val sparkConf = new SparkConf().setAppName("NetworkWordCount")
 val context = new StreamingContext(sparkConf, Seconds(1))

 val lines = context.socketTextStream("localhost", 9999)
 val words = lines.flatMap(_.split(" "))
 val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _)

 wordCounts.print()
 ssc.start()
 ssc.awaitTermination()
 }
}
public class WordCountTopology {
 public static class SplitSentence extends ShellBolt implements IRichBolt {
 public SplitSentence() {
 super("python", "splitSentence.py");
 }
 @Override
 public void declareOutputFields(OutputFieldsDeclarer declarer) {
 declarer.declare(new Fields("word"));
 }
 @Override
 public Map<String, Object> getComponentConfiguration() {
 return null;
 }
 }
 public static class WordCount extends BaseBasicBolt {
 Map<String, Integer> counts = new HashMap<String, Integer>();
 @Override
 public void execute(Tuple tuple, BasicOutputCollector collector) {
 String word = tuple.getString(0);
 Integer count = counts.get(word);
 if (count == null) {count = 0;}
 count++;
 counts.put(word, count);
 collector.emit(new Values(word, count));
 }
 @Override
 public void declareOutputFields(OutputFieldsDeclarer declarer) {
 declarer.declare(new Fields("word", "count"));
 }
 }
 public static void main(String[] args) throws Exception {
 TopologyBuilder builder = new TopologyBuilder();
 builder.setSpout("spout", new RandomSentenceSpout(), 5);
 builder.setBolt("split", new SplitSentence(), 8)
 .shuffleGrouping("spout");
 builder.setBolt("count", new WordCount(), 12)
 .fieldsGrouping("split", new Fields("word"));
 Config conf = new Config();
 conf.setDebug(true);
 if (args != null && args.length > 0) {
 conf.setNumWorkers(3);
 } else {
 conf.setMaxTaskParallelism(3);
 }
 StormSubmitter.submitTopologyWithProgressBar(args[0], conf, builder.createTopology());
 }
}
Machine Learning Pipelines

tokenizer = Tokenizer(inputCol="text", outputCol="words")
hashingTF = HashingTF(inputCol="words", outputCol="features")
lr = LogisticRegression(maxIter=10, regParam=0.01)
pipeline = Pipeline(stages=[tokenizer, hashingTF, lr])

df = sqlCtx.load("/path/to/data")
model = pipeline.fit(df)
Powerful Stack – Agile Development

- Hadoop MapReduce
- Storm (Streaming)
- Impala (SQL)
- Giraph (Graph)
- Spark

non-test, non-example source lines
Powerful Stack – Agile Development

non-test, non-example source lines
Powerful Stack – Agile Development

- Hadoop MapReduce
- Storm (Streaming)
- Impala (SQL)
- Giraph (Graph)
- Spark (SparkSQL, Streaming)

non-test, non-example source lines
Powerful Stack – Agile Development

non-test, non-example source lines
Powerful Stack – Agile Development

non-test, non-example source lines
Benefits for Users

High performance data sharing
 • Data sharing is the bottleneck in many environments
 • RDD’s provide in-place sharing through memory

Applications can compose models
 • Run a SQL query and then PageRank the results
 • ETL your data and then run graph/ML on it

Benefit from investment in shared functionality
 • E.g. re-usuable components (shell) and performance optimizations
Overview

1. Introduction
2. RDDs
3. Generality of RDDs (e.g. streaming)
4. DataFrames
5. Project Tungsten
Beyond Hadoop Users

Spark early adopters

Users
Understands MapReduce & functional APIs

Data Engineers
Data Scientists
Statisticians
R users
PyData …
pdata.map(lambda x: (x.dept, [x.age, 1])) \
 .reduceByKey(lambda x, y: [x[0] + y[0], x[1] + y[1]]) \
 .map(lambda x: [x[0], x[1][0] / x[1][1]]) \
 .collect()

data.groupBy("dept").avg("age")
DataFrames in Spark

Distributed collection of data grouped into named columns (i.e. RDD with schema)

Domain-specific functions designed for common tasks
 • Metadata
 • Sampling
 • Project, filter, aggregation, join, …
 • UDFs

Available in Python, Scala, Java, and R
Spark DataFrame

Similar APIs as single-node tools (Pandas, dplyr), i.e. easy to learn

```r
> head(filter(df, df$waiting < 50))  # an example in R
## eruptions waiting
##1 1.750 47
##2 1.750 47
##3 1.867 48
```
Spark RDD Execution

- Java/Scala frontend
- JVM backend
- opaque closures (user-defined functions)
- Python frontend
- Python backend
Spark DataFrame Execution

DataFrame frontend

Logical Plan

Catalyst optimizer

Physical execution

Intermediate representation for computation
Spark DataFrame Execution

Simple wrappers to create logical plan

Intermediate representation for computation
Benefit of Logical Plan: Simpler Frontend

Python : ~2000 line of code (built over a weekend)

R : ~1000 line of code

i.e. much easier to add new language bindings (Julia, Clojure, …)
Performance

Runtime for an example aggregation workload
Benefit of Logical Plan: Performance Parity Across Languages

Runtime for an example aggregation workload (secs)
Overview

1. Introduction
2. RDDs
3. Generality of RDDs (e.g. streaming)
4. DataFrames
5. Project Tungsten
Hardware Trends

Storage

Network

CPU
<table>
<thead>
<tr>
<th>Hardware Trends</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage</td>
<td>50+MB/s (HDD)</td>
</tr>
<tr>
<td>Network</td>
<td>1Gbps</td>
</tr>
<tr>
<td>CPU</td>
<td>~3GHz</td>
</tr>
</tbody>
</table>
Hardware Trends

<table>
<thead>
<tr>
<th>Component</th>
<th>2010</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage</td>
<td>50+MB/s (HDD)</td>
<td>500+MB/s (SSD)</td>
</tr>
<tr>
<td>Network</td>
<td>1Gbps</td>
<td>10Gbps</td>
</tr>
<tr>
<td>CPU</td>
<td>~3GHz</td>
<td>~3GHz</td>
</tr>
</tbody>
</table>
Hardware Trends

<table>
<thead>
<tr>
<th>Component</th>
<th>2010</th>
<th>2015</th>
<th>(\times)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage</td>
<td>50+MB/s (HDD)</td>
<td>500+MB/s (SSD)</td>
<td>10X</td>
</tr>
<tr>
<td>Network</td>
<td>1Gbps</td>
<td>10Gbps</td>
<td>10X</td>
</tr>
<tr>
<td>CPU</td>
<td>~3GHz</td>
<td>~3GHz</td>
<td>😞</td>
</tr>
</tbody>
</table>
Project Tungsten

Substantially speed up execution by optimizing CPU efficiency, via:

(1) Runtime code generation
(2) Exploiting cache locality
(3) Off-heap memory management
From DataFrame to Tungsten

Initial phase in Spark 1.5
More work coming in 2016
Project Tungsten: Fully Managed Memory

Spark’s core API uses **raw Java objects** for aggregations and joins
- GC overhead
- Memory overhead: 4-8x more memory than serialized format
- Computation overhead: little memory locality

DataFrame’s use **custom binary format** and off-heap **managed memory**
- GC free
- No memory overhead
- Cache locality
Example: Hash Table Data Structure

Keep data closure to CPU cache
Example: Aggregation Operation
Unified API, One Engine, Automatically Optimized
Refactoring Spark Core

SQL
Python
SparkR
Streaming
Advanced Analytics

DataFrame (& Dataset)

Tungsten Execution
Summary

General engine with libraries for many data analysis tasks

Access to diverse data sources

Simple, unified API

Major focus going forward:
 • Easy of use (DataFrames)
 • Performance (Tungsten)