Design Document

Archivist

Members: Scott Selinger, Rob Edwards, Tyler Boswell,
Charles Gilliam, Dung Mai

Advisor: Rosina Weber

Stakeholder: Lori Richards

Revision

Name Date Reason Version
Scott Selinger, Rob November 8, 2016 Initial Draft 1.0
Edwards, Tyler
Boswell, Charles
Gilliam, Dung Mai
Scott Selinger, March 24, 2017 Add chrome 1.1
Charles Gilliam, Rob extension diagram
Edwards and update advanced

search diagram
Scott Selinger, May 18, 2017 Reflect changes 1.2

Charles Gilliam, Rob
Edwards, Dung Mai,
Tyler Boswell

during the
development process

Table of Contents

1. Introduction
1.1. Purpose
1.2. Target Platform

2. Interface
2.1. Login Screen
2.2. Main Screen
2.3. Action Bar
2.4. Side Panel
2.5. Upload File Screen
2.6. View File Screen
2.7. Settings Screen
2.8 Chrome Extension
2.9 Ul Component Design

3. Architecture
3.1 Context Diagram
3.2 Components

4. Data

4.1 Model Design

4.2 API Endpoints
4.2.1 Authentication
4.2.2 Documents
4.2.3 Metadata
4.2.4 Groups and Fields
4.2.5 Public

4.3 Algorithms
4.3.1 Login
4.3.2 Automatic metadata
4.3.3 Advanced Search Algorithm

1. Introduction

1.1. Purpose

This document provides the design specifications for the Archivist web application interface and
chrome extension. It will describe components of the backend architecture and frontend
architecture and how they should behave and function.

1.2. Target Platform

The application will guarantee support on the Google Chrome browser version 53 or later. The
chrome extension will only run on the Chrome browser.

2. Interface

2.1. Login Screen

Purpose: This screen will allow a user to gain access into Archivist.

Details: The login screen will always be the first screen a user sees when they visit Archivist if
that user has not logged in before or has been logged out of Archivist.

Navigation & Interaction: A user will need to enter their username and password in the two
text fields under “Welcome to Archivist” and press the “Login” button. If authentication fails, the
user will remain on this screen, otherwise the main screen will be displayed to the user (see
section 2.2 for main screen.)

Welcome to Archivist

LOGIN

Figure 1. Login Screen

2.2. Main Screen

Purpose: This screen will allow users to view a list of all the files that were uploaded using the
upload screen (section 2.5) or through the chrome extension (section 2.8).

Details: This screen will show if the user is logged in, otherwise they will be redirected to the
login screen. The default number of files that will be displayed on the screen is 10 (this number
can be changed in the settings screen, section 2.7). There is no limit to how many files can be
displayed on the list. The default sort for the list is by the order they were added. The last file
added would be at the end of the list.

Navigation & Interaction: A user can single click on a file to view additional details about that
file. Single clicking on a file will extend the side panel which is where the additional details about
that file will be displayed. Double clicking on a file will redirect the user to the view file screen
(section 2.6) for that particular file. The user will be allowed to sort the list of files by clicking on
the title of each column such as “Title”, “Date Added”, and “Author.” The user can click the arrow
“>” to view the next 10 files (by default or the number of files to display that were set in the
settings screen, section 2.7). The user can click the double arrow “>>” to skip to the first or last
page. On this screen the user can access other screens using the top action bar, to see what

icon leads to which screen and what each feature on the action bar does, see section 2.3 for full
details.

Page1of3 > »» SUNMARY SEARCH
METADATA
Title ¢ Author Date Added o T
Date Aaded 0512016
The Time is Near John Rust 07/05/2020 e i

What a Time Dr. Alive 0510172018

Arlicle A Sir A 101472002

Aricle B Sirg 1014i2002
TAGS
Article C Sirc 101472002
DESCRIPTION
Aricle D Sird 1011412002
Atticle E SIrE 101472002
Aricle F SirF 10/14/2002
Aricle G SirG 101472002
Aricle H SirH 1011412002

Displaying items 1-10 of 30

Figure 2. Main screen with single click on a file and side panel showing

Archivist (Y - ® 860

.
~

No results

Figure 3. Main screen without any files in the system

2.3. Action Bar

Purpose: The action bar will allow user to navigate to other screens while logged in.

Details: This bar will always be available to the user at the top of their screen except on the
login screen (section 2.1). The icons are displayed based on the context of the current page,
see figure 4, 5, and 6 below for details of what icon will be displayed on what screen.

Navigation & Interaction: From left to right on the action bar, clicking the word “Archivist”
(figure 4.1) will always take the user to the main screen (section 2.2). The search box (figure
4.2) will allow a user to perform searches by typing in the search box. Clicking the “Advanced
Search” (figure 4.2) will open up the side panel search tab (section 2.4). Clicking on the upload
icon (figure 4.3) will take the user to the upload screen. Clicking the settings icon (figure 4.4) will
take the user to the settings screen. Clicking the logout icon (figure 4.5) will logout a user and
take the user to the login screen (section 2.1). The back button (figure 5.1) , in figure 5 and 6
below, takes the user back to the previous screen that they were on.

Aot ————

Figure 4. Action bar on the main screen and view file screen

Figure 4.1 Actionbar home button

Search Here (oW Advanced Search

Figure 4.2 Search bar and advanced search button

Figure 4.3 Upload file button

Figure 4.4 Settings button

Figure 4.5 Logout button

Archivist ¢

Figure 5. Action bar upload screen

Figure 5.1 Back button

Archivist 4

Figure 6. Action bar on settings screen

2.4. Side Panel

Purpose: The side panel will allow a user to view additional information about a specific file
when a user single clicks on a file on the main screen (section 2.2). It will allow a user to
perform advanced searches. The side panel will also allow a user to edit metadata, description,
and tags on specific file.

Details: The side panel is only available on the main screen (section 2.2) and the view item
screen (section 2.6). This panel will always be on the right side of the screen under the action
bar (section 2.3). The initial width of the panel is % of the whole screen. The width of the panel
can be resized. The maximum width of the side panel is % of the whole screen. The side panel
width will expand into the main screen (section 2.2), so other elements on the screen will take
up less space so that the components never overlap. The side panel can be collapsed by
clicking on the narrow bar containing the arrow icon to the left of the sidebar. The side panel can
be expanded by clicking the arrow on the right side of the screen. When expanded, the width of
the panel will go back to how it was before it was collapsed. For example, if the width of the side
panel was resized to be % of the screen, after collapsing, when expanded, the width should still
be %.

The side panel will contain two tabs. One is summary (see figure 7 below) and one is a search
tab (see figure 8 below). The summary tab will display the metadata, tags, and description of a
particular file that was selected on the main screen (section 2.2). If no file was selected, the
summary tab will display nothing but “Please select an item on the table to the left.” The search
tab will display the groups of searches a user can perform along with the search and reset

button. The groups are “categories”, “metadata”, “tags”, “description”, and “full text.”

SUMMARY SEARCH

METADATA
Author John Rust
Date Added 07/05/2020
Title The Time is Mear
FooBar 1 some value 5
Moo 1 some value 6
Zigfag 1 some value 4
FooBar 2 some value 2
Moo 2 some value 3
ZigZag 2 some value

TAGS 'P:

DESCRIPTION

Figure 7. Summary tab on side panel with no description or tags

e

Create your searches for files below:

Find files with...

Category Metadata Tags Description
Full Text

3 3

Figure 8. Default search tab in the side panel

Navigation & Interaction: Clicking the arrow will expand the side panel. Clicking it again will
collapse the side panel. While on the summary tab and an item on the main screen is selected,
a user can click the “Edit Metadata.” This will turn all metadata values into different editable

HTML5 input types depending on the metadata field type. For example, date types will use a
datepicker, and numeric types will only allow numeric values. Clicking save will save all the
current values in those input fields. See figure 9 below.

METADATA

Author John Rust

Date Added 2020-07-06T00:00:00.000Z
Title The Time is. Near

FooBar 1 some value 5

Moo 1 some value 6

ZigZag 1 some value 4

FooBar 2 some value 2

Moo 2 some value 3

figZag 2 s0me value

Figure 9. Metadata section after clicking the “Edit Metadata” button

Clicking the “Edit Description” button will open up a textbox that allow a user to type and save
the current value in the textbox by clicking the save button. This description accepts full
Markdown support. See figure 10 below.

DESCRIPTION

this is a description

o L o

Figure 10. Description textbox after clicking the “Edit Description” button

While on the search tab, clicking on any of the groups such as “categories”, “metadata”, “tags”,
“description”, and “full text” will show a new section to search within the group that was clicked.
Clicking the “Reset” button will reset the list on the main screen (section 2.2) to its default state.

Clicking on the “category” word will show a new section in the tab that allow users to pick a
category from the drop down. The number of categories the user can choose from depends on
the user's custom created categories using the settings screen (section 2.7), otherwise,
“generic” and “website” will always be the default options. Users can also pick more than one
category by clicking the link “+Add Item Type.” Clicking the search button will perform a search

using the category or categories picked by the user. Users can also choose to select “and” or
“or” between categories. “And” will search for files that are in all categories picked by the user.
“Or” will search for files that contain at least 1 of the category picked by the user. Clicking the
“not” checkbox on top left will allow the user to perform search for files that are not in the
category picked by the user when clicking the search button. See figure 11 and 12 below.

SUMMARY SEARCH

Create your searches for files below:

|| not Category [x]

Select Category v
+ Add Item Type

Find files with...

Category Metadata Tags Description
Full Text

s L

Figure 11. Default category section after clicking the group “Category’

SUMMARY SEARCH

Create your searches for files below:

| not Category lil

Website v | x|
and »

Generic v | x|

Find files with_..

Category Metadata Tags Description
Full Text

Figure 12. Category section after clicking “+Add Item Type” with two maximum categories

Clicking the “Metadata” group will show a new section. Users can select the category name then
select the field name that relate to the category in the drop downs that they would like to search
for. Users then will need to enter the value that they are looking for in the text box. For example,
if a user selects “website” and “url” in the drop downs, and they would like to search for a file
that was saved into the system from www.amazon.com, the user would enter “amazon” in the
text box. This would search for all files that have a URL containing the word “amazon.” Users
can also search for files with multiple metadata fields by clicking the “+Add Metadata Field.”
Users can choose “and’/”or” option after clicking the “+Add Metadata Field”. Selecting “and” will
search for files that containing every field, and selecting “or” will search for files containing at

least one of the fields.
SUMMARY SEARCH

Create your searches for files below:

not Metadata | X |

Generic v Title v
Enter search value._.
+ Add Metadata Field

Find files with...

Category Metadata Tags Description
Full Text

sl | oot

Figure 13. Metadata section with “Generic” and “Title” selected

http://www.amazon.com/

SUMMARY SEARCH

Create your searches for files below:

| not Metadata |i|

Select Categor v SelectField v [x|

Enter search value. ..

and v

Select Categor v SelectField v | x|

Enter search value. .

and

Select Categor v SelectField v | x |
Enter search value...

+ Add Metadata Field

Find files with_..

Category Metadata Tags Description
Full Text

D) &3

Figure 14. Metadata section after clicking “+Add Metadata Field” three times

Clicking the “Tags” group will show a new section with a text box for users to enter tags that
they would like to search. Typing in the words in the text box and pressing the “Enter” key will
register a tag. After entering in all the tags users want to search, clicking the “Search” button will
search for all files in the system that have been tagged with the tags user entered in the text
box.

SUMMARY SEARCH

Create your searches for files below:

| not Tags and | x

foo x | |

Find files with_.

Category Metadata Taas Description
Full Text

=3 D

Figure 15. Tags section with the word “foo” after pressing “Enter” key

Clicking the “Description” group will show a new section with a text box. Users can enter any
words in the text box that they would like to search for files that contain those words in their
description. A description of a file is text that were entered by the user or through the Chrome
extension that describes what the file is about.

SUMMARY SEARCH

Create your searches for files below:

Description lil

Find files with_..

Category Metadata Tags Description
Full Text

D) &3

Figure 16. Description section

Clicking the “Full Text” group will show a new section with a text box. Users can enter any words
in the text box. Clicking the “Search” button after entering words in the text box will search for

any files that contain those words in the file's content. For example, if a user saved a website
that contains the word “job” on the website that was saved and the user entered “job” in the full
text search box, that file will show up on the list on the main screen.

SUMMARY SEARCH

Create your searches for files below:

Full Text [x]

Find files with...

Category Metadata Tags Description
Full Text

=D D

Figure 17. Full Text section

Users can also click on multiple groups to show multiple sections. This way users can search
files using multiple groups. Any files that contain content that are in all of the groups will show
up on the list in the main screen. Users can also check the “not” checkbox on each of the group.
This will search for files and show these files on the list on the main screen that don’t belong in
these groups that user checked.

SUNMMARY SEARCH :
Create your searches for files below:
not Category | X |

Select Category v
+ Add Item Type
and »
hot Metadata L
Select Categc v SelectField
Enter search value
+ Add Metadata Field
and
not Tags and » | X
and
Description X |
| I |

Figure 18. Search tab in side panel with multiple groups clicked

2.5. Upload File Screen

Purpose: This screen allow a user to upload a file from their computer to the Archivist system.

Details: A user can only upload either a PDF or HTML file. The user is required to enter a title in
the generic group and the user is required to select a file before uploading. The file that is
uploaded through this screen will appear on the list on the main screen (section 2.2). There will
be a description text box and a tag box. There will be two default metadata groups called
“generic” and “website” (see figure 19 below for more details). All metadata groups will be
checkboxes with the exception of the “generic” group. By checking the checkbox, textboxes that

represent fields within that metadata group will appear. See figure 20 below. Extra metadata
groups can be created in the settings screen (see section 2.7). Any custom metadata groups
that are created in the settings screen will also appear on this screen.

Navigation & Interaction: A user can choose a file from their computer by clicking the upload
icon on the left of the screen, this will bring up the standard file selection for the user’s operating
system window. The user will be required to enter in a title before being able to submit the file.
The user can enter a description and tags. The user can check a checkbox to view the
metadata fields for that particular metadata group. Then the user can enter in any values for
each field. Clicking the “upload” button will upload the selected file, along with all the values the
user has entered on this screen to the database. After clicking upload, the user will still be on
this screen.

Archivist =

Upload New File
Information about the file can be entered helow:

Generic

Choose a file... Website

Tags

Description

Figure 19. Default Upload Screen

Information about the file can be entered below:

Generic
Title
Author
05/11/2017

Date Published

em Size
Choose a file...

Website

¥ Custom 1

custom1 field

¢l Custom 2

custom2 field

Tags

Figure 20. Upload Screen with Custom Metadata Selected

Upload New File

T D DT =
(' F lurar N
TCP_IP Tutorial.pdf

Figure 21. Upload Icon Displaying The File Selected

2.6. View File Screen
Purpose: This screen will allow users to view the contents of the file they have uploaded.
Details: The user will be redirected to this screen upon double clicking a file on the main

screen. The file will be represented as close to the original viewing experience as possible. If
the file was a PDF and was originally spread across multiple pages, then it will be spread across

multiple pages in the view file screen as well, with arrows located at the top of the screen to
navigate through those pages. The current page and total page count will also be displayed at
the top of the screen with the option to change the current page which will allow the user to
more easily switch from page to page.

The side panel (section 2.4) will be on this screen. The size of the file content will adjust to fill
the screen base on the width of the side panel. If the original viewing experience was on one
single page, then the same will be true for the view file screen. If the file is too long to be
displayed on a single page, then there will be a scroll bar along the right side of the screen in
between the document and the side panel. There will be a zoom in, zoom out, and reset buttons
for PDFs to allow zooming in the file content, zooming out the file content, or reset back to
default zoom, which is 100%.

Navigation & Interaction: A user can expand or collapse the side panel (section 2.4) by
clicking the arrow on the right side of the screen. The user can click the arrow “>” or “>>" to
navigate through the content of the file. The user can click the plus magnifying glass to zoom in
or the minus magnifying glass to zoom out or the reset button to reset the view of the file
content. The user can navigate to all other screens using the action bar (see section 2.3).

Archivist + . ® 80|

[&] [®] Reset eif

TGP/IP Tutorial and
Technical Overview

Figure 22. Viewing a PDF file at default zoom without side panel

Archivist (Y ® o

e @, | Reset S SUMMARY SEARCH

METADATA
Author

Date Added 05/11/2017

Date Published
Item Size

Title Tutorial

TCP/IP Tutorial and

TAGS

Technical Overview -

atest

4

Edit Description

”fﬁaderstand networking fundamentals
of the TCP/IP protocol suite

—
Intradnree advanced ranrente

Figure 23. Viewing a PDF file at default zoom with side panel opened

2.7. Settings Screen

Purpose: This screen will allow users to create and edit metadata groups, view how many files
they have uploaded, the amount of disk space these files take up, and change the number of
files to display on the main screen (section 2.2.)

Details: “Usage” will contain the number files in the database and the amount of disk space
these files take up.

“File Category” will allow users to edit and add more metadata groups to the upload screen. The
two default ones will always be display are “generic” and “website.” These two metadata groups
cannot be deleted or edited.

“File List” will allow a user to specify how many files will be display on the main screen (section
2.2).

Navigation & Interaction: Users can add new categories and metadata fields in the “File
Category” section. These new categories and metadata fields will show up in the upload screen
(section 2.5) and the search tab in the side panel (section 2.4) for the category group and
metadata group. Two default groups, "Generic" and "Website", are always present and cannot
be removed.

To add a new group, users can type in the name in the "Enter category name" text input and
click "Add" button. The new category name will show up under the "All Categories" list.

To view the metadata fields or edit them, click on a category on the list to see more details (see
figure 25). After clicking on a category on the list, users can see a list of fields (if there are any)
for that particular category.

To add a new metadata field to the category, enter the name of the metadata field in the "enter
field name" text box and select the field type using the drop down and click "Add" button next to
it to add a new metadata field. The new metadata field will show up on “All Fields” list (see
figure 28).

To delete a metadata field, click the “X” button next to the metadata (figure 28) a user would
want to delete. “Generic” and “Website” metadata fields will not have the “X” since these two
categories cannot be edited by the users.

Archivist < ® O
Settings

Manage and view your preferences below:

Usage

44 files in Archivist

92.12 MB of disk space used for files

File Category

Add new categories for your file and manage meta data for each category. A category can be used when uploading a file.
All Categories:

Generic
Website

test

Eoker cotgryne =3

File List:

Number of files to display on main page:

- 3

Figure 24. Default Settings Screen

File Category

Add new categories for your file and manage meta data for each category. A category can be used when uploading a file.

All Categories:

Generic

Website

Enter category name

Generic Metadata:
Default groups cannot be edited

Title
Author
Date Added

Date Published

doofé

Item Size

Figure 25. File Category section when “Generic” is selected. All fields within the selected
category are displayed below

File Category

Add new categories for your file and manage meta data for each category. A category can be used when uploading a file.
All Categories:

Generic

Website

Custom Category
Enter category name m

Custom Category Metadata:
Edit this category's metadata fields below

Enter field name Select type... ¥ m

Figure 26. File Category when a user-defined category is selected. In this case, “Custom
Category” is selected

File Category

Add new categories for your file and manage meta data for each category. A category can be used when uploading a file.
All Categories:

Generic

Website

Custom Category
Enter category name m

Custom Category Metadata:
Edit this category's metadata fields below

Custom Field [string .3

Enter field name string 4 m

Figure 27. User defined category with one new metadata field added

To change number of files that will display on the list of the main screen (section 2.2), under the
“File List” section, hover the mouse over number in that section. An arrow up and down will
appear. Clicking up will increase the number of files to display on a single page on the list on the

main screen, and click down will decrease the number. Click “Save” button next to it to save the
change.

2.8 Chrome Extension

Chrome Extension
1
Web Browser (content scripts) Scrape
Request
= Il
pageReaderjs | | popup.js Blob
Scraped ™ > " File
[} Fields
JSON - .
Page Metadata pgge SingleFile
“—— Scrape Groups pata Extension
Config _\| JSON 1 ’ Y
Archivist Common Files | Cross
Extension
api.js singleFlle.js Message
custom ScraperConfig.js

GET __ POST

Metadata Page

Groups — Data

Archivist
Public API

Figure 28. Chrome Extension high level data flow diagram

If the user wants to upload a file using the Web Extension, the process is handled differently
than uploading a file via the Upload File Screen for the user. Before being able to do so, the
user must configure the extension with an API location corresponding to the server where
Archivist is installed. Once that is complete and the user requests to upload a document via the
Web Extension, the extension then communicates with the Ruby on Rails Public API, which is
exposed to the network, which then communicates with the MongoDB database.

2.9 Ul Component Design

For simplicity, we broke this section into multiple different diagrams to enhance readability.

App

]
— 1 ot

Login Main List Viewer Settings Upload

T A A A T A A

Action Bar Item Grid Sidebar Tooltip

~

Key

| Higher-Order Component |

Grid Description Paginator | Container C t |
ontainer Componen

Presentational Component
Figure 29. Front-end Component Design (React)

The root of the application contains a single, higher-order component called App. It has a child
HOC called Auth, which handles all authentication and makes sure the user is logged in before
showing any content. Container components are “smart” components, who are connected to the
state of the application, and contain several child components. Container components are also
able to make changes to the state of the application. Presentational components are “dumb”
components, and are reused throughout the application for various needs. They do not control
the state of the application, and only manage their own state.

State Views

User » Login
Item r > ltem Grid
Search E Viewer
Settings » Settings
Upload g Upload
Action Bar E Action Bar
Viewer :':: Sidebar
Sidebar

Figure 30. Front-end State Design (Redux/React)

Container components are linked to the state of the application. They receive state properties
from various slices of the state. For example, the Viewer component portions of the item state,
sidebar state, and viewer state. The viewer needs to get the current item’s data, resize based
on the sidebar’s width, and gets information like current page number for pdfs from the viewer
state. Each container has the ability to call actions, which can trigger various reducers (or
listeners) in each state slice, and the state is updated accordingly. For example, if the current
selected item is changed, the item state slice is updated. Then, the viewer, sidebar, and item
grid will receive the new information about the item and update based on the new item.

3. Architecture

This section will detail the backend architecture for Archivist through the use of various
diagrams as well as a brief description of each of the different components.

3.1 Context Diagram

Private Metwork

requests ouilined in webpage

over hitps - » 4—JSOMN aver hittp—» -
i Webpack bundle
User owver hittp —
HAPTOXY Ruby on Rails MongoDB
Private API
Web Server
Chrome Extension: requests under fpuslic » €«—JSON over hitr—e
Archivist Clipper over hitps 7 N T
HAProxy Ruby on Rails
Public API

Figure 31. Context Diagram explains the flow of data between pieces of our system.

Figure 31 shows the overall architecture for the Archivist project. The architecture consists of
five major components: the Web Server front end, the Ruby on Rails Private API, the Ruby on
Rails Public API, the Chrome Web Extension, and MongoDB.

3.2 Components

All the following components, sans Web Extension, will be run using Docker in their own
container. A docker-compose file will be used to network the containers together and ensure
that connections can only be made from approved sources.

MongoDB: The product will use the version 3.2. Mongo will be configured for small file support
to store the uploaded files in addition to the user data.

Ruby on Rails APIs: Both will use Rails 5 with Ruby version 2.2.5, and will handle data retrieval
as well as business logic. All access to Mongo will be through the Rails APIs. The private API
will only be accessible to/from the MongoDB container, and Web Server container. The public
API will be accessible publicly — but will require a token for authentication — and to MongoDB.

Web Server: This component will be hosted with the most recent version of Node.js, and the
user interface will be designed with React version 15.3.2 and Redux version 3.6. It will
communicate with the users’ web browsers, store the authentication token for the user across
sessions, and retrieve information from the Rails private API.

Web Extension: The extension is built specifically for the Google Chrome browser and will only
be available on that platform. The extension uses much of the same technical platform as the
main front end of the application. It is built using ECMAScript 6 style javascript without any extra
frameworks. The current implementation of the extension is in two parts. One part is the already
existing SingleFile core extension which handles the page processing. The other part is our
extension which receives html file output from the core extension and passes that to the public
API. Our extension is also responsible for allowing the user to enter metadata, tags and
description. In some cases those fields can be automatically filled in from specific custom web
scraper configurations or through more general OpenGraph standards if they are used.

4. Data

4.1 Model Design

Grouping::Group
Setting
name: String
docs_per_page: Numeric
User !
email: String Grouping::Row
Revision :
name: String name: String
password_digest: String type: String
1.7
FileStorage 1 Document Tag
file :Object <————{ description :String <> name: String
fulltext :String search_fields :Hash search_name: String
0.
0.
Mote
1. color: String
MetadataGroup content: String
name: String
MetadataField::String
—
1.7
MatadaiaFiold MetadataField: Numeric
—

data: Object

last_updated: DateTime <:]—<

name: String h MetadataField::Date

type: String

\ MetadataField::Boolean

Figure 32. UML Class Diagram for Backend Code

4.2 AP| Endpoints

The body of

4.2.1 Authentication

URL /authentication/login
Method POST
Input Body | { email: String, password: String }
Output If did login: { auth_token: String }
Otherwise: { error: String }
Description | The authorization token is a JsonWebToken.
URL /authentication/status
Method GET

Input Header

{ Authorization: String }

Output

If token is valid: { valid: true }
Otherwise: { valid: false }

Description

4.2.2 Documents

URL /documents
Method GET
Input Query | { page: Integer }
Params
Output {
documents: [{
id: String,
metadata_fields: [{
id: String,
name: String,

type: String,

data: String,
group: String
b
b

meta: {
current_page: Integer,
next_page: Integer,
prev_page: Integer,
total_pages: Integer,
total_count: Integer

}
}
Description
URL /documents
Method POST

Input Body | { document: [{

file: String,

description: String,

tags: [String, ...],

metadata_fields: [{
name: String,

type: String,
data: String,
group: String,
bl
}
Output { success: true }
Description
URL /documents/search
Method GET

Input Query | { page: Integer }
Params

Input Body | { search: {

andOr,

groups: [{
groupType: String,

andOr: Boolean,
not: Boolean,
QUERY

Lo
}

Output

{

documents: [{
id: String,
metadata_fields: [{
id: String,
name: String,
type: String,
data: String,
group: String
bl
I P
meta: {
current_page: Integer,
next_page: Integer,
prev_page: Integer,
total_pages: Integer,
total_count: Integer

}
}

Description

QUERY can be: (a) description: String, (b) terms: String, (c) tags: [String, ...],
(d) item_types: [String, ...], (e) fields: [{name: String, type: String, group: String,
data: String}, ...]

URL

/documents/:id

Method

GET

Output

{ document: {

id: String,

content_type: String,

description: String,

tags: [String, ...],

metadata_fields: [{
name: String,
type: String,
data: String,
group: String,

}

Description
URL /documents/:id
Method PUT

Input Body | { document: {
description: String,
tags: [String, ...],
count: Integer,

}
}

Output { success: true }

Description | Count is the number of tags in the array.

URL /documents/:id/content
Method GET

Output The stored file as a blob.
Description

4.2.3 Metadata

URL /metadata_fields/types
Method GET
Output { types: [String, ...]}

Description | All the supported metadata types.

URL /metadata_fields/:id

Method PUT

Input Body | { metadata_field: { data: String } }

Output

{ success: true }

Description

4.2.4 Groups and Fields

URL

/system/groups

Method

GET

Output

{ groups: [{
id: String,
name: String,
can_edit: Boolean,
fields: [{
id: String,
name: String,
type: String
bl
}

Description

URL

/system/groups

Method

POST

Input Body

{ group: {
name: String,
fields: [{
name: String,
type: String
}
}

Output

{ group: {
id: String,
name: String,
can_edit: Boolean,
fields: [{
id: String,
name: String,
type: String
}

Description
URL /system/groups/:id
Method GET
Output { group: {
id: String,
name: String,
can_edit: Boolean,
fields: [{
id: String,
name: String,
type: String
}
}
Description
URL /system/groups/:id
Method PUT
Input Body | { name: String }
Output If group is editable: { success: true }
Otherwise: { success: false }
Description
URL /system/groups/:id
Method DELETE
Output If group is editable: { success: true }
Otherwise: { success: false }
Description
URL /system/groups/:group_id/field

Method

POST

Input Body | { field: {
name: String,
type: String
}
}
Output If group is editable: { success: true }
Otherwise: { success: false }
Description
URL /system/groups/:group_id/field/:id
Method PUT
Input Body | { field: {
name: String,
type: String
}
}
Output If group is editable: { success: true }
Otherwise: { success: false }
Description
URL /system/groups/:group_id/field/:id
Method DELETE
Output If group is editable: { success: true }
Otherwise: { success: false }
Description
4.2.5 Public
URL /public/documents
Method POST
Description | This is equivalent to POST /documents from 4.2.2
URL /public/groups

Method

GET

Description

This is equivalent to GET /public/groups from 4.2.4

4.3 Algorithms

The following sections describe, at a high level, the most crucial algorithms to the Archivist
project structure and functionality.

4.3.1 Login

' Frontend Private
i
i Submit User/Pass 2o i A?I
i] i
! Hash Pass |
! Send User/Pass -)
i J Verify User/Pass
H
Token on :User
1 model
o new -
valid login
o) P A— i
i
retum Token
|
\ return Token and log them in
h
i
invalid login retumn
[return invalid login Ll
! !
X : |
| |
! | |
| ! !
1 visit page and send token !
h verify token = i
E equals? -
i
valid tokenJ
T
|
|
) retum requested page
!
i
invalid toke nJ [T TOUMTUIRIBEL s
T relum false =3
: refurn 403 [|
i
X H |
: ! !
| ! |
T +
H : ! |
] ogout ! !
E r send logout for user il
; > destray o
' ’u
|
' G mstmsnsr s st St S St e R e
; e rewm
fzozozd retumito jogin acreeny. . . :

Figure 33.

Token Authentication Model

X

4 .3.2 Automatic metadata

Filz is added
to upload
gusus

FOF

HTML File

HTML File or via
Wb Extension?

{

Upload filz

Fill in ciemment
date for date
added

Fillin URL
field with
curmentURL

Wieb Extznsion

Is thers a cusiom
scraping configuration
forpage?

Is thers
OpenGraph data
for page?

no

scrape and fill
configured
fizkds
automatically
for page

F Y

Fillin select
fields with
OpenGraph
data

Figure 34. File upload automatic metadata logic

YES

4.3.3 Advanced Search Algorithm

Post search
query

Query Blocks

Tags

Item Types

elect document ids

Metadata Fields

Description

associated to each Tag
name

andior
results?

Return intersection
of document ids

Return unique set of
all document ids

Select document ids
associated to each
MetadataGroup name,

and/or
results?

Group by document

Return document ids that match the
number of MetadataGroups originally
passed in

‘Retum unique set of
all document ids

Add Document ids into the
exclude filter of the query

Or Document ids together into
he que

ot the documen
ids?

Select all fields, MetadataGroup id, and
document id for each MetadataField name,

Filter for fields that match their
user inputed graup

Filter for fields that match their
user inputed data

and/or
results?

Group by document
id

‘Retum unique set of
all document ids

Return decument ids that maich the
number of MetadataFields onginally
passed in

Return all document ids that
cantain the input string

Include another?

No

Parform search

Figure 35. Advanced Search Algorithm State Diagram

