AN AN AN

HIGHWATER

Design Specification Document
v10

Prepared by

Colan Biemer,
Allison Frauenpreis,
Gabrielle Getz,
Jasmine Marcial,
Laura Mo,
Shreya Patel

Advisor
Jeff Salvage

Stakeholder

Frank Lee

Highwater Design Specification Document - Glass Prison Games

Table of Contents

Prepared by
Advisor
Stakeholder

Table of Contents
Document History

Introduction

Purpose

Scope

Design Goals
Maintainability
Optimized Performance
Designer Friendly

Definitions

References

System Overview

Algorithms
Poisson Disc Sampling
Voronoi Diagrams
City Generation
Flocking
Weather

Technologies Used

Architecture
Project Overview
Module Overview
Game Module
City Module
Weather Module
Event Manager Module
Radio Module
Player Module
Camera Module
Crafting and Inventory Module

Highwater Design Specification Document - Glass Prison Games

© 0 o o N g0 000 0o o AN -

N N NDDN A = A A A A
- 2 OO0 © oo o o P+~ SN~ O

Ul Module
YAML File Structure
Item List YAML
Inventory YAML
Recipe YAML
Detailed Class Descriptions
Unity Background
Class Descriptions
Traceability Matrix

Highwater Design Specification Document - Glass Prison Games

23
25
25
26
27
29
29
29
29

Document History

v 0.1 | Created document template, added project overview Gabrielle Getz 4/10/17
v 0.2 | Added design goals, architecture overview and Allison Frauenpreis, 4/15/17
modules Gabrielle Getz,
Jasmine Marcial
Laura Mo
v 0.3 [Added flocking and weather algorithms Colan Biemer 41717
v 0.4 | Added Technologies Used section, Project Overview Gabrielle Getz 4/17/17
section, and Module overview sections.
4

Highwater Design Specification Document - Glass Prison Games

Introduction

Purpose

This document specified architecture and software design decisions for the game, Highwater.

Scope

This describes the software architecture and software design decisions for the implementation
of Highwater. The intended audience of this document is the developers, designers, and
software testers of Highwater.

Design Goals

Creating a game poses a unique software development situation. The developers work closely
with both technical and non-technical designers who may change requirements frequently, or
request new functionality further into the development process. Additionally, there will only be
one major release of the software, with potential bug fix patches. Taking this into consideration,
the following principles guided the design of Highwater:

Maintainability

With a large team of developers it is important that developers are able to change one
component of the project without needing to change many components that other developers
may be working on. In addition, with requirements that were often in flux, it is important to be
able to easily change functionality that had already been written without disturbing other related
components. Therefore, all major components of the game such as the player, Ul, and city
generation are separated into decoupled modules. Furthermore, the back-end code that does
not directly use objects in a Unity scene is contained in a layer separate from front-end code.
This allows developers that did not program the backend to be able to make adjustments to
code that uses this functionality in the front end.

Within Unity itself, prefabs were also used to define GameObjects. Updating a prefab will
update all instances of that GameObject used in the game, allowing for repeated use of
GameObjects both within and across scenes.

Optimized Performance

The game will need to have optimized performance as the game is updating and rendering 60
times per second. This means only performing costly operations when necessary and
performing function that need to be run every frame as efficiently as possible to provide the best
experience for users.

Highwater Design Specification Document - Glass Prison Games 5

Designer Friendly

Allowing non-technical designers to make modifications to the behavior of the software without
having to understand code was a necessity. This means avoiding hard coding variables
wherever possible and instead exposing the values in the Unity Inspector, where designers
can make changes without modifying any code. In addition, build processes were automated via
scripts which designers could run through menus in Unity.

Furthermore, certain components in the project can be configured using a text file, allowing
components to be easily expandable without modifying code.

Highwater Design Specification Document - Glass Prison Games 6

Definitions

Block

City Bounds

District

GameObject

Inspector

Instance
MonoBehaviour

Prefab

Procedural Building

Scene

Script

Template Building

Unity

YAML

References

The second-level subdivision of the city which define an area
between roads where building may be placed.

A predefined volume in which the procedurally generated city and
all object within the game are confined to.

The first-level subdivision of the city which have unique
configuration for buildings and items generated there.

Base class for entities in Unity scenes

Unity window that shows the properties of whichever GameObject
or script is currently selected in the open scene

A specific instantiation of an object
Base class from which all Unity scripts derive

A GameObiject that is saved in Unity with set properties so that it
may be duplicated in the scene as needed

A type of building placed in the procedural city, generated at
runtime from a configuration.

An instance of the game that can be compiled as part of a game
build. Games must have at least one scene, but can have many (i.e.
different Scenes for each level, start screen and game over
screens, etc.)

Code that is attached to game objects to trigger events and set their
attributes

A type of building placed in the procedural city created by a
designer and placed as-is.

Cross-platform 3D game engine

(YAML Ain't Markup Language) A data serialization language made
for human readability.

Highwater Game Design Document

Highwater Design Specification Document - Glass Prison Games 7

https://docs.google.com/document/d/1SXAzU_CntqimUDQxNd3fnRS0swLhdIqX5l9G-IItuFY/edit?usp=sharing

Highwater Acceptance Test Plan

Highwater Generated Documentation: This document details all the modules and references the
design document requirements listed in the requirements of the Game Design Document, linked
above. Due to the length of the generated documentation and the large size of the codebase,
we have linked the document and provided the PDF file (HighwaterGeneratedDocument.pdf)
separate from this document.

System Overview

Technologies Used

The game engine Unity is used for lower-level functionality such as loading assets, rendering,
and physics. Our source code is written in C#. We also leverage some third-party C# libraries
for creating and parsing YAML files, and creating audio files through text-to-speech. Unity
plugins are also used for managing sound (FMOD) and 3D model animations (DOTween).

Architecture

Highwater Generated Documentation: This document details all the modules and references the
design document requirements listed in the requirements of the Game Design Document, linked
above. Due to the length of the generated documentation and the large size of the codebase,
we have linked the document and provided the PDF file (HighwaterGeneratedDocument.pdf)
separate from this document.

Project Overview

The Highwater project is built around the Unity game engine and combines our source code
along with third party libraries used with assets generated by the design team, including 2D
textures, 3D meshes and animations, shaders written in GLSL, and audio files into one project.

Highwater Design Specification Document - Glass Prison Games 8

https://docs.google.com/document/d/16aSGLm7ZEXETZEGLzuUaRbCK4ooTHPaLZNZxWup6PVA/edit?usp=sharing
https://drive.google.com/open?id=0BwQmkZxXQkRkX3NPZjVON0dtMlU
https://drive.google.com/open?id=0BwQmkZxXQkRkX3NPZjVON0dtMlU

Generated
Audio

Files
——

Assets

Source Code

2D

Textures

—

3D

Meshes

—

GLSL
Shaders

GameBuild
; I
YAML YAML
Config Save
Files Files

Figure 1. Architecture of Highwater project

Using Unity, the project can be built on both PC and Mac. When run locally on either of these
systems, the game build employs Yaml files for configuration data, as well as to save data. This
allows the game’s configuration to be changed by both non-technical designers before the final
release, as well as by the end users to modify and extend the game. Since Yaml is used to hold
configuration data and libraries were chosen to parse these files, Yaml is also used to store and

load saved game data.

Module Overview

The major code is broken down into modules, including the city, the weather, event controller,
weather, player, and items & crafting. All separate modules are controlled and can be accessed

through the master Game class.

Highwater Design Specification Document - Glass Prison Games

—

Game

[| | |]

| City | | Weather |> - -‘ EventController |========-=- *i Player '—' Inventory | | Crafting
| | ; '
| CityController | | Building | . ‘ Camera % ,| PlayerController | | Item | H
- T ; !
L] ! 1]
L 1 ! 1]
J L ; H
! [
| WeatherEffects | Water | ‘ Radio ‘ Interactableltem |--------" !

|:| Game Module |:| Camera Module
|:| City Generation Module |:| Player Module
|:| Weather Module |:| Item Module
|:| Event Modules |:| Ul Module
[1 radio Module [sound Module

Figure 2. Overview of source code modules and their relationships

Furthermore, code within each module may be broken down into two groups. Back-end code
can be considered standalone code that does not execute directly in a Unity scene. This would
be data representations of objects like the city, the player, and her stats. Front-end code is
attached to GameObjects and executes in the Unity scene. This involves controlling graphical
objects, updating physics, or using ui or sound.

Game Module

Game ——»{ GameSettings

Figure 3. Game module class relationship diagram

Game is a singleton and can be accessed from any other class. This allows Game information
and status to be used in any class easily. Game also contains an instance of GameSettings
which holds the data for settings the user can configure in the menus, such as key bindings and
music volume.

City Module

The City Module is comprised of three major elements, city representation, city generation and
city management, all of which are controlled by the CityController.

Highwater Design Specification Document - Glass Prison Games 10

Figure 4. City module class relationship diagram

The city itself contains a list of districts, which contains a list of blocks contained in that district,
which contains the buildings in that block. Buildings can be either a complete model (referred to
as a TemplateBuilding), or a procedurally generated mesh (referred to as a
ProceduralBuilding).

The city is generated based on a in-depth configuration that the designers specify in the Unity
inspector. The CityController object has generators for each level of the city generation
(District, Block, Building, and ProceduralBuilding) which contain variables the
designers can manipulate to produce different results, as well a Generate method called by the
CityController at the proper step in the generation process. The Voronoi utility class takes
seed points as input and returns a Voronoi diagram.

Highwater Design Specification Document - Glass Prison Games 11

Since there are many meshes in the city to render and calculate physics against, they cannot all
be loaded at once. The city is managed by breaking the entire city down into a grid of chunks.
Each chunk contains the list of buildings its boundaries encompass. The CityChunkManager
each frame checks to see if the position of the player has changed. If it has, it updates by
loading the chunks closest to the player and unloading the chunks far from the player.

Weather Module
',---—} Regression
PressureSystem [PressureSystems e '1
*.1 1.1 :

./'?\ L*————} DiurnalTemperatureVariance
! - W
i Lightning ~ ----- %
i p—— Clock
; i N\
{---1 DayNignt - g i
i ---1 DebrisController E
i---1 RainContraller :
e] FloodWater

Figure 5. Weather module class relation diagram

The weather module uses the PressureSystem class as a data structure store the information
associated with a pressure system. PressureSystems has a list of these and provides various
functions such as finding the nearest pressure system to the WeatherSystem class. Additionally,
the WeatherSystem class continuously updates the pressure systems else the pressure
systems will remain stagnant. The weather system uses the Regression class to run a
regression algorithm on coefficients and input. This is used in the calculation of the current
weather for the player every frame. DiurnalTemperatureVariance is using the clock to
determine what part of the day it is and affect the temperature based on this information. The
clock is continuously updating and is responsible for handling diurnal temperatures along with
many other functions out of scope for the weather. The FloodWater class performs a function
similar to the the DiurnalTemperatureVariance in that it uses the theory behind it and applies
it to tides and adjusts the height of the water. Additionally it uses the WeatherSystem to get the
current level of precipitation to affect the height of the water over the course of the game.

Highwater Design Specification Document - Glass Prison Games 12

Lightning uses the clock to vary how often a lightning strike will occur relative to the game. It
also uses the weather system to define how often this will occur. DayNight rotates the sun and
the moon around the world using the same theory behind diurnal temperature and tides.
DebrisController and RainController control particle effects that show how bad or good
the weather current is according the WeatherSystem.

Event Manager Module
WeatherSystem EventManager WeatherSoundSystem FishSpawner Radio AmbientSoundManager ItemGenerator
v ¥ ¥ v v ¥ M

Game J
Time
passes Precipitation changes Change rain sound intensity

Lightning triggered Trigger thunder sound

Storm Begins Trigger increased fish spawning

Trigger radio static

Storm Ends Reduce fish spawning

Disable radio static

Increase item generation

Turn on Radio music
channel Lower ambient sound volume

Turn off Radio music
channel
i Raise ambient sound voluma i

Actor

Figure 6. Event Manager Swim Lane Diagram

The EventManager module has one main component and acts as a liaison between several
game modules, including the WeatherSoundSystem, WeatherSystem, FishSpawner, Radio,
AmbientSoundManager, and ItemGenerator. This module maintains a series of events that
can be triggered and subscribed to through an instance in the Game class, decreasing the
dependency between different parts of the code and allowing for new interactions to be created
without the need for major design changes in existing scripts.

13

Highwater Design Specification Document - Glass Prison Games

PlayerController WeatherSystem WeatherSoundSystem

v

AmbientSoundManager [#------------------ »| EventManager [r---------------- Gamelnstance
H
Radio FishSpawner Radio ItemGenerator

Figure 7. Event Manager Class Relationship Diagram

Radio Module

The radio module has one main component. The Radio class controls the functionality of the
radio, such as: changing the station and producing sound based on the selected station. To
produce sound, two third party tools called FMOD and RT Voice are utilized. FMOD is a sound
system, while RT Voice is a real-time text-to-speech asset.

Player Module

The player module has two major components, the backend code representing the player data
like stats, and the front-end representation, which controls the player GameObiject, like her
movement, animations, and getting keyboard and mouse input from the user.

Highwater Design Specification Document - Glass Prison Games 14

Player —>| PlayerStatManager

HealthRateManager ‘

HungerRateManager ‘

WarmthRateManager ‘

T
i
i
i
i
i
i
I
I
I
I
I

ControlScheme <>— PlayerController |--------+4 CameraController

b

Movement

[LandMovement

[WaterMovement

LLL

[RaftMovement

Figure 8. Player module and Camera module class relationship diagram

The Player class holds data about the current status of the player like death or any current
status conditions. This includes the player stats, health, hunger, and warmth. The
PlayerStatManager updates these stats according to rules specified in the
HealthRateManager, HungerRateManager, and WarmthRateManager.

The PlayerController class is the class which controls the player GameObject in the scene. It
checks for player input, checks against the current control scheme configured in the
ControlScheme class, and performs the proper functions. This includes movement, which
takes advantage of the Bridge pattern. Here the player will perform Move(), which is defined
differently depending on what surface the player is on, either through LandMovement,
WaterMovement, or RaftMovement which all inherit from the parent Movement class.

Camera Module

The camera module consists of one class which controls the Camera GameObiject. It uses
information about the player in the scene, such as the player position and user input to update
the camera position and rotation.

Crafting and Inventory Module

The crafting and inventory module consists of all classes related to Item definition, the
Inventory class that stores those items, and the factories that creates items. The Inventory
contains stacks of items, allowing for multiple instances of the same item to occupy one slot.

Highwater Design Specification Document - Glass Prison Games 15

The ItemFactory is used to create backend data of an item used by the Inventory. The
WorldItemFactory is used to create an Interactable gameobijectin the world that
represents an ltem.

Imventory
WorlditemFactory
E ’J ety IltermFactory
t <E | .
Interactableltem Stack i Rt ’ T i
i _j—o ltemType |=. Ingredient
Baseltem i
Attribute i ;
i - Recipe
ltemCategory ItemAction g—J %
(/ \ 1 -1 Requirement CraftingStat
¥
SolidCategory EquipableCategory

Figure 9. Item Crafting and Inventory Module class relation diagram

Items are defined by Item Categories which are suites of Actions and Attributes that
describe how an item behaves. ItemTypes describe what the item is. This is implemented
using a decorator pattern. Various category classes can be attached to the BaseItem class to
create unique combinations that drive item behavior. Inventories are made up of stacks, which
consist of an item and the amount of the item that is in the inventory.

Crafting occurs when multiple items are combined to make a new item. Recipes define how
items can be combined. Each recipe contains a list of Requirements--which state an item type
required, and how many of that item type is required--and the CraftingStats that will be
checked to determine the quality of the crafted item. During the crafting process, the items
selected to be used for a recipe is saved as Ingredients. The ItemFactory takes these
Ingredients and the Recipe specified and creates a new item. The new item is added to the
Inventory, and items used up as an Ingredient is removed.

Highwater Design Specification Document - Glass Prison Games 16

i Clicks ingredient ogtion button
*

Actor

Crafting Ul

Crafting Backend

Item Factory

Inventory Backend

T
1
¥

Game J

Adds ingredient 1o list of

[Continue with selections -

Clicks Craft Button

selected ingredients

Update Ul to reflect selection

Calls crafting function

Sends selected ingredients
»

Creates item with ingredients

Sends list of used ingredients

Finished removal

Send crafted item

Removes used ingredients

)

Adds item

Ul Module

The Ul module consists of the classes that connect to backend data, interpret it, and display the
information on screen for the user to interact with. This information updates when the backend
data is changed. The Ul includes the Player Stats, buttons to open up menus, the Inventory
Ul Panel, the Crafting Ul Panel, the Radio Panel, and the Notifications Panel.

Highwater Design Specification Document - Glass Prison Games

Figure 10. Swim lane diagram describing Crafting code flow

17

InteractableRadioModel

Game\ViewBehavior

RecipeBookBehavior js -~ 3

ChooseltemAmountBehavior | RecipePageBehavior RecipeRequirementsUI

GuilnstanceManager

IngredientU|Behavior

PlayerMotification WorldSelectionGUIDirector 1
g l WorldSelectionButtonBehavior

ltemStackDetailPanelBehavior (<& ------- . InventaryUl
- ltemStackUl
-1 ItemActionButtonUl ItemAttributelJ

Figure 11. Ul Module class relation diagram

The Ul Controllers are singleton objects stored within the GuiInstanceManager class. The
GameViewBehavior class references the GuiInstanceManager in order to control which Ul
elements should appear on screen.

InventoryUI controls the panel that contains a grid of all item stacks that the user has on
hand. Within that panel is a collection of ItemStackUI classes that controls what happens
when the user hover over an item stack or clicks on the item. It also updates how many items
there are in the stack and the sprite image and name of the item when the information is
changed.

When a grid cell is clicked, the ItemStackUI class will call the
ItemStackDetailPanelBehavior class through the GuiInstanceManager. The
ItemStackDetailPanelBehavior class handles the behavior of the subpanel that details
information about an item. On the subpanel, an item's description, attribute values, and possible
actions are shown. The ItemAttributeUI drives an Ul element which displays an item's
attribute's name and value. Each attribute ui element has this class attached. The
ItemActionButtonUI stores an action that can be done to an item, and fires it when the button
it is attached to is pressed. Once an action button is pressed, the ChooseItemAmountBehavior
class is called through the Instance Manager. The ChooseItemAmountBehavior class handles
selecting how many items in the stack will be affected by the action.

The other major Ul Panel is crafting panel which is controlled at the highest level by the

RecipeBookBehavior class. This class handles displaying recipes and updating the list to
ensure that craftable recipes are placed at the top of the list. Once a recipe in the list is clicked,

Highwater Design Specification Document - Glass Prison Games 18

control shifts to RecipePageBehavior. The RecipePageBehavior class handles displaying
information about a recipe. Through the RecipeRequirementsUI class, the
RecipePageBehavior class displays what requirements there are for the recipe. If the user
choose to begin crafting the recipe, the RecipePageBehavior class changes the Ul to display
panels containing buttons that utilize the IngredientUIBehavior class to select the items to be
used in the crafting process.

The InteractableRadioModel links to the backend Radio code. It handles interactions with
the 3D radio that appears when the Radio button is clicked. It handles radio animation when the
player clicks on the radio's buttons or turns its knobs. It also handles how the radio appears and
fades from the screen.

When interacting with items inside the world, at times it may require the player to select an
action to do to the item or an item from the inventory that should be used as part of that action.
In this case, the WorldSelectionGUIDirector class is used. It populates a panel with context
specific actions or item choices.

All notifications and warnings to the player use the PlayerNotification class, which controls
the notifications panel and the text that should appear on it.

YAML File Structure

YAML files are used to define configuration data as well as to save game data. YAML (YAML
Ain't Markup Language) is a data serialization language made for human readability. Yaml files
use whitespace to denote structure and all begin with three dashes to indicate the start of the
file. Each file uses a specific structure as detailed below.

Item List YAML

This Yaml file contains the complete list of items that can be found during gameplay. For each
item added, the following structure must be used:

- itemName:
baseItem:
itemName:
rarity: Can be uncommon, common, or rare
inventorySprite: The path to the sprite used for the
inventory UI
The file should be in Assets/
worldModel: The path to the model used for the item
when placed in the world
The file should be in Assets/Resources
types:

Highwater Design Specification Document - Glass Prison Games 19

- “type”
flavorText:
modifyingActionNames:
- “action”
actionModifiedModels:

- “modifiedItem”

actionModifiedSprites:

The description of the item

The actions that modify the item

The models that are used after a
modifying action is used

Note: They must be in the same order as
their corresponding action above

The sprites that are used after a
modifying action is used

- “modifiedsSprite Note: They must be in the same order as
their corresponding action above
itemCategories: The categories the item belongs to
- Ilcategory Each category name should start with !!

Attribute: value

Inventory YAML

This Yaml file stores the contents of an inventory. It's accessed during the start of the game to
load the current state. Any changes to the inventory is recorded in the file when saving. This file
is very similar in structure to the Item List Yaml. ltems in this file, however, are stackable, so
there are several stacks that are identifiable by their unique stackId. The stackId initiates at O

and increments by 1 for each additional stack.

- inventoryName:
items:

- stackId:
itemAmount:
item:

itemName:
rarity:
inventorySprite:
worldModel:
types:

- “type”

flavorText:

Initiates at ©

Number of items in stack

modifyingActionNames:
- “action”

actionModifiedModels:
- "modifiedModel"

actionModifiedSprites:

- "modifiedSprite"

Highwater Design Specification Document - Glass Prison Games 20

itemCategories:
- Ilcategory

attribute: value

Recipe YAML

This yaml file contains all the recipes that the player may use during gameplay. This differs from
the UnlockedRecipes.yml file which contains only the recipes that are currently available to the
player. However, both of these files utilize the same yaml structure. There is a tiered attribute
that is used to identify if certain stats of the required items should dictate whether the created
item is poor, standard, or good.

- recipeName:
tiered: Either true or false
toolRequirements: The tools that are needed to
complete the recipe
resourceRequirements:

- itemType: type

amountRequired:
statsToCheck: The stats that are used to help
£atN . identify the what tier the
- statiame: created item will be
statAffectingItems: The items that affect the
- itemT " created item based on the
itemtype identified stat
qualityThreshold: The threshold that defines what
tier the created item will be
- lowerThreshold
- upperThreshold
Algorithms

Highwater takes advantage of several known algorithms as part of several of the systems,
including generating the city, items, and weather.

Poisson Disc Sampling

Poisson Disc Sampling is used to generate several positions procedurally that seem random
and also naturally distributed. Unlike pure random generation which may appear clumped or
irregular when observed, Poisson Disc Sampling produces a spread of points that are more
evenly spread and more natural in appearance to human eye. This method is used throughout

Highwater Design Specification Document - Glass Prison Games 21

the project to select location including to generate the city locations, and well as to distribute
items throughout the city.

Add point to stack of
5| points to generate
" around and list of all
points.

Place first point

Generate new paint
~» around around
popped point.

Pap out point from
stack.

A

Check if point is
within x distace of
another point

Yes

Valid point. Save
point to stack and list.

There are still
pints in the stag

Return list of
all points.

Yeg &s5 than ma

ong point

Figure 12. Poisson distribution algorithm flow

Points are generated by taking a generated point and attempting to generate a new point
around the existing point. The new point is generated a minimum distance away from the
existing point. The smaller the minimum distance, the tighter objects will be packed. Then, the
space around that new point is checked to ensure that no points in its vicinity is within the
minimum distance specified. If there are none, then the point is valid and placed. Otherwise,
another point is generated. In the case of item generation, Poisson Disc Sampling also takes
into account the size of the objects it is attempting to place and the minimum distance desired
between placement points.

A grid is used to keep track of existing points to allow fast lookup of neighboring points. Placed
points are given a coordinate in the grid and stored. When a new point is checking to see if any
neighboring points are within minimum distance, all the points in the grid cells surrounding the
new point's grid coordinate are checked.

Voronoi Diagrams

Voronoi diagrams partitions an area based on the location of seed points into cells. Partitions
between cells are created between points so that both points are equidistant to the partition line.

Highwater Design Specification Document - Glass Prison Games 22

The seed points are defined beforehand as passed as input. This creates natural looking cells of
varying shapes and sizes, and can be controlled by changing the seed points passed to the
algorithm.

City Generation

City generation make use of Voronoi diagrams and the Poisson Disc Sampling described
above.

Numbered seeds were used as input to generate the city. One of the most important aspects of
the city is that it generate differently for each seed, but providing the same seed would result in
the same city each time. To enforce this, a random number generator is seeded with the
provided seed at the beginning of the process, and all generation variations are based on output
from the random number generator.

Generate seed points Create districts with a .
e , . L . Assign each cell a
within city bounds with = Voronoi Diagram based = .. . ,
. L . district configuration
Poisson Distribution on seed points

Generate seed points Create blocks with a
— in a regular grid within =1 Voronoi Diagram based
the district on seed points

Pl templat Generate a Pl dural
-ac.e an?,r emplate procedural -| Place p:mlce ura
buildings in the block. o building
building
until full

Figure 13. Process for generating the city

First, seed points are generated within a predefined volume call the city bounds using Poisson
Disc Sampling. These points are then used as input to a Voronoi diagram. The cells of this
diagram are city districts, and each is assigned a unique district configuration which includes a
name and configuration information for how buildings are generated in this district as well as
which items may be generated there.

Highwater Design Specification Document - Glass Prison Games 23

Next, within each district, seed points are generated in a regular grid pattern. Some jitter may be
applied to the grid point positions in order to give the grids slight natural variations. These seed
points are then again used as input for a Voronoi diagram. The cells of these diagrams define
blocks, or areas where buildings may be generated, and the edges of the diagram are used to
define road to border each block.

The city is populated with two types of buildings, template buildings and procedural buildings.
Template buildings are duplicates of gameObjects designers create. These are simply placed
as is into a location in the city. Procedural buildings are used to fill in the city and are the
majority of the building seen. They are generated by selected one of several building base
meshes and combining this mesh with one of several roof meshes. Then for each side of the
building, there is a designer-defined chance of generated a building attachment, which could be
a wing of the building, a shelter object, or a window washer platform object.

Inside each block, template buildings are placed first based on Poisson Disc Sampling
described above, as they tend to be larger and more important than the procedural buildings
which act as filler. The remaining space of the block is filled by generating procedural buildings.
A building is generated and packed into the block until no more buildings have room to be
placed.

Flocking

Flocking is the process of merging several steering behaviors, specifically cohesion, separation,
alignment, and wander. To combine each behavior a weight is applied to each result
acceleration vector and the resulting vectors are added together. This acceleration is applied to
the GameObject of the fish to create realistic flocking behaviors. Additionally, this has many
variables associated with it such as the weight for each of the behaviors. Instead of creating one
file that every fishes uses, each agent at the start will create a configuration with randomized
values between pre-decided values. This is to give the flocking a more authentic look as each
fish will move different presented with the same situation.

Cohesion, separation, and alignment will be affected by the surrounding fish. A physics
overlapsphere will be used, built into unity, to find the fish in the desired radius. This radius is
set in a configuration file. Testing showed that this was more efficient than looping through all
the fish available. Each algorithm will then use the found fish to affect their behavior. This effect
will be listed below in each steering behaviors description.

Cohesion is a behavior that brings surrounding agents together. To accomplish this a physics
overlapsphere is used to find the nearby fish and then the average position of each fish can be
found. A direction vector can be calculated by subtracting the current fish’s position from the
average position of each fish. The resulting vector is normalized and returned. If no fish are
found then an empty vector with zero values is returned.

Highwater Design Specification Document - Glass Prison Games 24

Separation will cause agents to disperse so they don’t get too close to each other. This will once
again find the nearby fishes and iterate through each. In each iteration a vector will be
calculated to find the direction vector facing towards the fish defining its behavior by subtracting
the fish’s position by the fish that is currently being iterated on. If the magnitude of the resulting
vector is not 0 then the result of the normalized vector divided by the regular vectors length will
be added to a resultant vector. This makes it so the contribution of each fish will vary based on
the distance. The resulting vector will be normalized and returned. If, however, no fish are found
at the start a zero vector will be returned.

Alignment forces agents to face the same direction. This will once again use a physics
overlapsphere to find the nearby fishes. Each of the nearby fishes velocities will be added up
and normalized. This normalized vector is returned, unless no fish are found and then a zero
vector is returned.

Wander will cause the agent to wander around the environment. This uses a configured jitter, a
float, which will affect how much the agent will wander. This is done by calculating a vector
which uses a random binomial multiplied by the jitter for each coordinate in the world space. A
random binomial is a random number, between zero and one, subtracted from another random
number. The result is a number that is between -1 and 1 with a higher likelihood towards 0. This
resulting vector is then normalized and multiplied by a configured wander radius to give the
configured magnitude for the behavior. The vector is then transformed into world space as it
currently represents a point. The world space coordinates are subtracted from the agent's
position to give a resulting direction vector. This vector is normalized and returned.

Weather

Weather is built around pressure systems that exist in the world. These pressure systems will
move around the world using attraction and detraction forces. These forces, similar to magnets,
are decided upon based on whether the pressure system is a high or low pressure system. Two
low or high pressure systems will detract, push, and one of each will attract, pull. Each of these
pressure systems will have a pressure associated with it. Low pressure systems are associated
with stormy weather and high pressure systems are associated with clear skies and warmer
weather. The pressure systems are gamified by adding an additional force that pushes low
pressure systems towards the center of the city.

To calculate the weather the player is currently facing the closest pressure system is found and
the pressure at the center is used as the basis for calculating the remaining weather variables:
pressure, temperature, wind velocity, relative humidity, relative dew point, and precipitation.

Pressure is calculated by measuring the distance the player is from the center of the pressure

system and adjusting the pressure systems pressure based on the distance for the player. If the
player is in a low pressure system then the pressure is increased, else, the player is in a high

Highwater Design Specification Document - Glass Prison Games 25

pressure system, the pressure will decrease. This is done by using a multiplier of 1 for low
pressure systems and -1 for high pressure systems.

Temperature is calculated from two different results. The first is based on the time of day, where
when the sun is at the highest it will add the most heat. When the moon is at the highest point, it
will subtract the most heat from the temperature. This is a diurnal temperature system which is
an approximation of the real world’s temperature throughout the day. The second part is
calculated based on the pressure that was found above using the ideal gas law:

pressure
——

temperature = o

The air density uses a configured constant based on the average density of air in the real world.
This once again is an approximation as this will only work in an ideal world. The resulting
temperature is converted from kelvin to fahrenheit.

Wind velocity required very complex formulas and fluid dynamics that were out of scope for this
project. Additionally, the required information for these formulas do not exist in the game world.
Instead a quadratic regression was opted for to approximate the way wind behaves. To find the
ideal coefficients a separate machine learning library can be used to find the coefficients from
real world data. In this case SkLearn, a python machine learning library, and
Wunderground.com can be used to approximate the functions. In addition, extra data will be
needed to handle the extreme points of high and low pressure. The coefficients can be given to
a regression function which will then calculate the result based on the inputs. For wind speed,
every previously calculated variable is used as each relates to wind: pressure and temperature.
Figure X shows the resulting wind speed calculation. Additionally it displays why quadratic
regression was opted for over linear regression and it provides a better approximation of the
data with the extremes.

200 Lorenz Attractor: Regular

=== Linear Regression
== Quadratic Regression

Wind Speed (MPH)

850 900 950 1000 1050 1100
Sea Level Pressure (M8)

Highwater Design Specification Document - Glass Prison Games 26

Figure 14. Wind speed approximation based on real world data.

With the wind speed calculated the direction still needs to be calculated. For this common
knowledge for weather systems is used to inform the way the wind is moving. Low pressure
systems will have winds rotating around them counter-clockwise and inward. High pressure
systems will have winds rotating around them clockwise and outward. The inward and outward
directions indicate that each direction will change slightly to not be perpendicular to the resulting
direction vector based on being counter or counter-clockwise. The wind direction vector is
normalized and multiplied by the correct wind speed to give the correct magnitude.

Relative humidity isn’t affected by the wind, but will require intense calculations or data that
hasn’t been found in the world up until this point in execution. Regression is once again used,
this time with pressure and temperature with a different set of coefficients.

Relative dew point can be calculate using the August-Roche-Magnus approximation (“RH
stands for relative humidity and “T” stands for temperature):

RH 17.624%T
243.04 «(In({55) + G+ 7

o RH_17.625¢T
(17.625~In({55)~ 33500t

dew point =

Precipitation is calculated with regression on pressure, temperature, relative humidity, wind
speed, and the relative dew point that we have found above. A different set of coefficients is
again used for this regression task.

As can be seen each calculation, besides pressure, requires variables from behavior. This
results in a pipeline that runs one after the other. Also, due to the coefficients being
pre-calculated this weather prediction requires very little time as no calculation requires
extensive work.

Detailed Class Descriptions

Unity Background

Many Highwater classes inherit from the Unity builtin class MonoBehaviour. A class inheriting
from MonoBehaviour allows the code to be connected to and control properties of a
GameObject, Unity’s representation of an object in a scene. Public variables as well as
serialized private variables are exposed in Unity’s Inspector where designers may change the
value of those variables. MonoBehaviour also allows the user to implement built in methods like
“Start” and “Update” which execute at specific times in the game loop.

See Unity’s documentation for more information:
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html

Highwater Design Specification Document - Glass Prison Games 27

https://docs.unity3d.com/ScriptReference/MonoBehaviour.html

Class Descriptions

Auto-generated Class Documentation

Traceability Matrix

The link to the comprehensive traceability matrix can be found here:
https://docs.google.com/document/d/1o0lgAubYWg2lhRLsJNgC NQDcFtHDIlai5-3FAAZtm
sE/edit?usp=sharing

Highwater Design Specification Document - Glass Prison Games 28

https://docs.google.com/document/d/1oIqAubYWg2IhRLsJNgC_NQDcFtHDllai5-3FAAZtmsE/edit?usp=sharing
https://drive.google.com/open?id=0BwQmkZxXQkRkLTd2a1pPaTRrb1k
https://docs.google.com/document/d/1oIqAubYWg2IhRLsJNgC_NQDcFtHDllai5-3FAAZtmsE/edit?usp=sharing

