Findings and Future Work

Findings:
- Collected data from 48 participants, over 4 immersive conditions
- Traditional data measures (i.e. time, presence) do not show statistical significance between conditions
- Preliminary analysis shows differences in fNIRS signal, depending on difficulty level and immersive cues. The response varies by fNIRS channel location.

Future Work:
- Deeper analysis on the spatial activation patterns
- Combine brain activity with other measures to distinguish interaction-related workload from task-related workload
- Establish best practices for using fNIRS to deeply investigate user experience with novel input devices

Testing Conditions

<table>
<thead>
<tr>
<th>Immersive Cues</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stereo vision</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Haptic feedback</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>6-DOF Stylus</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

Methodology

- **zSpace:**
 - Head tracking with 3D glasses
 - Stereoscopic Vision
 - 6 Degrees of Freedom
 - Haptic feedback

- **Functional Near-Infrared Spectroscopy (fNIRS):**
 - Non-invasive method of measuring brain activity
 - Proven useful as a new method of evaluation in HCI settings
 - 10 sensors and two detectors collect data based on hemoglobin levels

- **Testing zPuzzle with fNIRS:**
 - Measurements taken of user’s head
 - Baseline brain activity is established with fNIRS
 - zPuzzle conditions are assigned and completed
 - Post-task survey administered with NASA-TLX and MEC-SPQ
 - Paper and pencil tests examine spatial reasoning skills