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Roadmap

ÅIntroduction & Motivation

ÅPart 1: SubgraphDetection in Statistic Attributed Networks

ÅPart 2: SubgraphDetection in Dynamic Attributed Networks

ÅFuture Directions
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Taxonomy

Anomalous & significant subgraph detection 

Statistic attributed networks Dynamic attributed networks 

Fast subset scan

Complex networksSpatial networks

Graph scan
Nonparametric graph 

scan 

Submodular 
optimization  

methods

Graph-structured Sparse  
optimization methods
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Specifics of the dynamic setting

ÅGraph and temporal (multi-network) dimensions
ÅGraph:Connectivity/Density/Weight
ÅTime: Contiguity/Recurrence/Stability

ÅBaseline: Independent snapshot detection and then 
connect in time
Å(-) Do not consider all slices at a time
Å(-) Heuristic post-processing across time

ÅFocus for this part: detection of general subgraphs 

ÅWhat we will NOTaddress
ÅGlobalnetwork properties over time
ÅIndividualnode/edge properties over time
ÅEvolutionary clustering: partitions the full network as 

opposed to focus on specific subgraphs
ÅStatic structure: e.g. community detection
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Taxonomy

Anomalous & significant subgraph detection 

Dynamic networks 

Predictive 
subgraphs

Additive score Frequency/Stability
Local community 

score

Compression of 
attributes

+ Static
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Taxonomy

Anomalous & significant subgraph detection 

Dynamic networks 

Predictive 
subgraphs

Additive score Frequency/Stability
Local community 

score

Compression of 
attributes 
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Additive attribute score

ÅSensor readings
ÅScore = spatio-temporal scan 

statistic
ÅSubgraphs: 
Åstable or smoothly evolving
Åconnected

Score=11

ÅSigned weights on elements

ÅScore = sum of weights

ÅSubgraphs of interest:
Åstable or smoothly evolving
Åconnected
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Dynamic processes: traffic jams

Affected 
Interval

Affected 
Subgraph
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Affected 
Subgraph

Affected 
Interval

Dynamic processes: fact search
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Mining heavy dynamic subgraphs
ώ.ƻƎŘŀƴƻǾ Ŝǘ ŀƭΦ L/5aΩмм]

ÅNode/edge scores change over time, structure fixed

ÅPositive scores correspond to anomaly/event of interest

ÅDynamic subgraph: (subgraph, interval)

ÅHeaviest Dynamic Subgraphof maximum score

ÅNP-hard (Single slice: HS ċČPCST)

ÅLarge search space: (connected subgraphs) x ( t2 intervals)

Score=11

Score=-4
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Baseline filter-and-verify approach

Å5ƛǎŎŀǊŘ άōŀŘέ ƛƴǘŜǊǾŀƭǎ
ÅUB on score O(|E|) 
ÅRelax connectivity constraints to obtain UB

ÅDiscard intervals if UB < global LB

ÅTo obtain a LB and evaluate intervals
ÅTransform to PCST-Tree and solve exactly 
ÅFaster than existing PCST heuristics ώWƻƘƴǎƻƴΩллϐ

ÅChallenge: Quadratic filtering costO(t2 |E|)
ÅNeed to consider every interval
ÅTraffic: 1 month@5 min -> 75 mil. aggregated graphs

ÅIdea:Filter at a coarser temporal resolution
ÅCombine overlapping intervals into groups
ÅHigh overlap -> similar solutions
ÅFilter whole groups at a time

м      н     о   Χ                     ǘ

Time

11



ÅLeft-aligned group S(i,j,k): intervals that start at 
time i and end at time [j,k], ƛҖƧҖƪ
ÅMinimum overlap h=(j-i+1)/(k-i+1): The length 
ratio of shortest and longest interval 
ÅIf  0<h <1, then #groups = O(t log(t))

Left-Aligned Interval Grouping

=h0.5

S(1,3,6)
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ÅDominating graph E(i,j,k) for a groupS(i,j,k)
o Weights: maximum in any grouped interval
o HS(E(i,j,kύύ җ I{όDόi,l)), ƧҖƭҖƪ

Time

Max

E

How to Filter Whole Groups?

5 2 -1

5

i j     k   
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Time to build index O(t|E|) , Bottom-up
Compose one Ein O(log(t)|E| )
Compute all Ein O(t log2(t) |E|) vsO(t2|E|)

Filter in O(tlog2(t)|E|) 
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